getting_started.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036 
00037 using namespace std;
00038 
00039 USING_NAMESPACE_ACADO
00040 
00041 /* >>> start tutorial code >>> */
00042 int main( )
00043 {
00044         // Define a Right-Hand-Side:
00045         // -------------------------
00046         DifferentialState x;
00047         DifferentialEquation f;
00048         TIME t;
00049 
00050         f << dot(x) == -x + sin(0.01 * t);
00051 
00052         // Define an initial value:
00053         // ------------------------
00054 
00055         DVector xStart(1);
00056         xStart(0) = 1.0;
00057 
00058         double tStart = 0.0;
00059         double tEnd = 1000.0;
00060 
00061         Grid timeHorizon(tStart, tEnd, 2);
00062         Grid timeGrid(tStart, tEnd, 20);
00063 
00064         // Define an integration algorithm:
00065         // --------------------------------
00066 
00067         IntegrationAlgorithm intAlg;
00068 
00069         intAlg.addStage(f, timeHorizon);
00070 
00071         intAlg.set(INTEGRATOR_TYPE, INT_BDF);
00072         intAlg.set(INTEGRATOR_PRINTLEVEL, MEDIUM);
00073         intAlg.set(INTEGRATOR_TOLERANCE, 1.0e-3);
00074         intAlg.set(PRINT_INTEGRATOR_PROFILE, YES);
00075         intAlg.set(PLOT_RESOLUTION, HIGH);
00076 
00077         GnuplotWindow window;
00078         window.addSubplot(x, "x");
00079 
00080         intAlg << window;
00081 
00082         // START THE INTEGRATION
00083         // ----------------------
00084 
00085         intAlg.integrate(timeHorizon, xStart);
00086 
00087         // GET THE RESULTS
00088         // ---------------
00089 
00090         VariablesGrid differentialStates;
00091         intAlg.getX(differentialStates);
00092 
00093         cout << "x = " << endl << differentialStates << endl;
00094 
00095         DVector xEnd;
00096         intAlg.getX(xEnd);
00097 
00098         cout << "xEnd = " << endl << xEnd << endl;
00099 
00100         return 0;
00101 }
00102 /* <<< end tutorial code <<< */


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:58:24