00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_toolkit.hpp> 00036 #include <acado_gnuplot.hpp> 00037 00038 00039 int main( ){ 00040 00041 USING_NAMESPACE_ACADO 00042 00043 00044 DifferentialState s,v,m ; // the differential states 00045 Control u ; // the control input u 00046 Parameter T ; // the time horizon T 00047 DifferentialEquation f( 0.0, T ); // the differential equation 00048 00049 // ------------------------------------- 00050 OCP ocp( 0.0, T ); // time horizon of the OCP: [0,T] 00051 ocp.minimizeMayerTerm( T ); // the time T should be optimized 00052 00053 f << dot(s) == v; // an implementation 00054 f << dot(v) == (u-0.2*v*v)/m; // of the model equations 00055 f << dot(m) == -0.01*u*u; // for the rocket. 00056 00057 ocp.subjectTo( f ); // minimize T s.t. the model, 00058 ocp.subjectTo( AT_START, s == 0.0 ); // the initial values for s, 00059 ocp.subjectTo( AT_START, v == 0.0 ); // v, 00060 ocp.subjectTo( AT_START, m == 1.0 ); // and m, 00061 00062 ocp.subjectTo( AT_END , s == 10.0 ); // the terminal constraints for s 00063 ocp.subjectTo( AT_END , v == 0.0 ); // and v, 00064 00065 ocp.subjectTo( -0.1 <= v <= 1.7 ); // as well as the bounds on v 00066 ocp.subjectTo( -1.1 <= u <= 1.1 ); // the control input u, 00067 ocp.subjectTo( 5.0 <= T <= 15.0 ); // and the time horizon T. 00068 // ------------------------------------- 00069 00070 GnuplotWindow window; 00071 window.addSubplot( s, "THE DISTANCE s" ); 00072 window.addSubplot( v, "THE VELOCITY v" ); 00073 window.addSubplot( m, "THE MASS m" ); 00074 window.addSubplot( u, "THE CONTROL INPUT u" ); 00075 00076 OptimizationAlgorithm algorithm(ocp); // the optimization algorithm 00077 algorithm << window; 00078 algorithm.solve(); // solves the problem. 00079 00080 00081 return 0; 00082 }