simple_ocp.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_toolkit.hpp>
00036 #include <acado_gnuplot.hpp>
00037 
00038 
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043 
00044     DifferentialState        s,v,m      ;     // the differential states
00045     Control                  u          ;     // the control input u
00046     Parameter                T          ;     // the time horizon T
00047     DifferentialEquation     f( 0.0, T );     // the differential equation
00048 
00049 //  -------------------------------------
00050     OCP ocp( 0.0, T );                        // time horizon of the OCP: [0,T]
00051     ocp.minimizeMayerTerm( T );               // the time T should be optimized
00052 
00053     f << dot(s) == v;                         // an implementation
00054     f << dot(v) == (u-0.2*v*v)/m;             // of the model equations
00055     f << dot(m) == -0.01*u*u;                 // for the rocket.
00056 
00057     ocp.subjectTo( f                   );     // minimize T s.t. the model,
00058     ocp.subjectTo( AT_START, s ==  0.0 );     // the initial values for s,
00059     ocp.subjectTo( AT_START, v ==  0.0 );     // v,
00060     ocp.subjectTo( AT_START, m ==  1.0 );     // and m,
00061 
00062     ocp.subjectTo( AT_END  , s == 10.0 );     // the terminal constraints for s
00063     ocp.subjectTo( AT_END  , v ==  0.0 );     // and v,
00064 
00065     ocp.subjectTo( -0.1 <= v <=  1.7   );     // as well as the bounds on v
00066     ocp.subjectTo( -1.1 <= u <=  1.1   );     // the control input u,
00067     ocp.subjectTo(  5.0 <= T <= 15.0   );     // and the time horizon T.
00068 //  -------------------------------------
00069 
00070     GnuplotWindow window;
00071         window.addSubplot( s, "THE DISTANCE s"      );
00072         window.addSubplot( v, "THE VELOCITY v"      );
00073         window.addSubplot( m, "THE MASS m"          );
00074         window.addSubplot( u, "THE CONTROL INPUT u" );
00075 
00076     OptimizationAlgorithm algorithm(ocp);     // the optimization algorithm
00077     algorithm << window;
00078     algorithm.solve();                        // solves the problem.
00079 
00080 
00081     return 0;
00082 }


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 12:00:00