00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 namespace Eigen {
00011
00012 namespace internal {
00013
00014
00015
00016
00017 template <typename _Scalar>
00018 struct kiss_cpx_fft
00019 {
00020 typedef _Scalar Scalar;
00021 typedef std::complex<Scalar> Complex;
00022 std::vector<Complex> m_twiddles;
00023 std::vector<int> m_stageRadix;
00024 std::vector<int> m_stageRemainder;
00025 std::vector<Complex> m_scratchBuf;
00026 bool m_inverse;
00027
00028 inline
00029 void make_twiddles(int nfft,bool inverse)
00030 {
00031 using std::acos;
00032 m_inverse = inverse;
00033 m_twiddles.resize(nfft);
00034 Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
00035 for (int i=0;i<nfft;++i)
00036 m_twiddles[i] = exp( Complex(0,i*phinc) );
00037 }
00038
00039 void factorize(int nfft)
00040 {
00041
00042 int n= nfft;
00043 int p=4;
00044 do {
00045 while (n % p) {
00046 switch (p) {
00047 case 4: p = 2; break;
00048 case 2: p = 3; break;
00049 default: p += 2; break;
00050 }
00051 if (p*p>n)
00052 p=n;
00053 }
00054 n /= p;
00055 m_stageRadix.push_back(p);
00056 m_stageRemainder.push_back(n);
00057 if ( p > 5 )
00058 m_scratchBuf.resize(p);
00059 }while(n>1);
00060 }
00061
00062 template <typename _Src>
00063 inline
00064 void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
00065 {
00066 int p = m_stageRadix[stage];
00067 int m = m_stageRemainder[stage];
00068 Complex * Fout_beg = xout;
00069 Complex * Fout_end = xout + p*m;
00070
00071 if (m>1) {
00072 do{
00073
00074
00075
00076
00077 work(stage+1, xout , xin, fstride*p,in_stride);
00078 xin += fstride*in_stride;
00079 }while( (xout += m) != Fout_end );
00080 }else{
00081 do{
00082 *xout = *xin;
00083 xin += fstride*in_stride;
00084 }while(++xout != Fout_end );
00085 }
00086 xout=Fout_beg;
00087
00088
00089 switch (p) {
00090 case 2: bfly2(xout,fstride,m); break;
00091 case 3: bfly3(xout,fstride,m); break;
00092 case 4: bfly4(xout,fstride,m); break;
00093 case 5: bfly5(xout,fstride,m); break;
00094 default: bfly_generic(xout,fstride,m,p); break;
00095 }
00096 }
00097
00098 inline
00099 void bfly2( Complex * Fout, const size_t fstride, int m)
00100 {
00101 for (int k=0;k<m;++k) {
00102 Complex t = Fout[m+k] * m_twiddles[k*fstride];
00103 Fout[m+k] = Fout[k] - t;
00104 Fout[k] += t;
00105 }
00106 }
00107
00108 inline
00109 void bfly4( Complex * Fout, const size_t fstride, const size_t m)
00110 {
00111 Complex scratch[6];
00112 int negative_if_inverse = m_inverse * -2 +1;
00113 for (size_t k=0;k<m;++k) {
00114 scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
00115 scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
00116 scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
00117 scratch[5] = Fout[k] - scratch[1];
00118
00119 Fout[k] += scratch[1];
00120 scratch[3] = scratch[0] + scratch[2];
00121 scratch[4] = scratch[0] - scratch[2];
00122 scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
00123
00124 Fout[k+2*m] = Fout[k] - scratch[3];
00125 Fout[k] += scratch[3];
00126 Fout[k+m] = scratch[5] + scratch[4];
00127 Fout[k+3*m] = scratch[5] - scratch[4];
00128 }
00129 }
00130
00131 inline
00132 void bfly3( Complex * Fout, const size_t fstride, const size_t m)
00133 {
00134 size_t k=m;
00135 const size_t m2 = 2*m;
00136 Complex *tw1,*tw2;
00137 Complex scratch[5];
00138 Complex epi3;
00139 epi3 = m_twiddles[fstride*m];
00140
00141 tw1=tw2=&m_twiddles[0];
00142
00143 do{
00144 scratch[1]=Fout[m] * *tw1;
00145 scratch[2]=Fout[m2] * *tw2;
00146
00147 scratch[3]=scratch[1]+scratch[2];
00148 scratch[0]=scratch[1]-scratch[2];
00149 tw1 += fstride;
00150 tw2 += fstride*2;
00151 Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
00152 scratch[0] *= epi3.imag();
00153 *Fout += scratch[3];
00154 Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
00155 Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
00156 ++Fout;
00157 }while(--k);
00158 }
00159
00160 inline
00161 void bfly5( Complex * Fout, const size_t fstride, const size_t m)
00162 {
00163 Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
00164 size_t u;
00165 Complex scratch[13];
00166 Complex * twiddles = &m_twiddles[0];
00167 Complex *tw;
00168 Complex ya,yb;
00169 ya = twiddles[fstride*m];
00170 yb = twiddles[fstride*2*m];
00171
00172 Fout0=Fout;
00173 Fout1=Fout0+m;
00174 Fout2=Fout0+2*m;
00175 Fout3=Fout0+3*m;
00176 Fout4=Fout0+4*m;
00177
00178 tw=twiddles;
00179 for ( u=0; u<m; ++u ) {
00180 scratch[0] = *Fout0;
00181
00182 scratch[1] = *Fout1 * tw[u*fstride];
00183 scratch[2] = *Fout2 * tw[2*u*fstride];
00184 scratch[3] = *Fout3 * tw[3*u*fstride];
00185 scratch[4] = *Fout4 * tw[4*u*fstride];
00186
00187 scratch[7] = scratch[1] + scratch[4];
00188 scratch[10] = scratch[1] - scratch[4];
00189 scratch[8] = scratch[2] + scratch[3];
00190 scratch[9] = scratch[2] - scratch[3];
00191
00192 *Fout0 += scratch[7];
00193 *Fout0 += scratch[8];
00194
00195 scratch[5] = scratch[0] + Complex(
00196 (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
00197 (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
00198 );
00199
00200 scratch[6] = Complex(
00201 (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
00202 -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
00203 );
00204
00205 *Fout1 = scratch[5] - scratch[6];
00206 *Fout4 = scratch[5] + scratch[6];
00207
00208 scratch[11] = scratch[0] +
00209 Complex(
00210 (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
00211 (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
00212 );
00213
00214 scratch[12] = Complex(
00215 -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
00216 (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
00217 );
00218
00219 *Fout2=scratch[11]+scratch[12];
00220 *Fout3=scratch[11]-scratch[12];
00221
00222 ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
00223 }
00224 }
00225
00226
00227 inline
00228 void bfly_generic(
00229 Complex * Fout,
00230 const size_t fstride,
00231 int m,
00232 int p
00233 )
00234 {
00235 int u,k,q1,q;
00236 Complex * twiddles = &m_twiddles[0];
00237 Complex t;
00238 int Norig = static_cast<int>(m_twiddles.size());
00239 Complex * scratchbuf = &m_scratchBuf[0];
00240
00241 for ( u=0; u<m; ++u ) {
00242 k=u;
00243 for ( q1=0 ; q1<p ; ++q1 ) {
00244 scratchbuf[q1] = Fout[ k ];
00245 k += m;
00246 }
00247
00248 k=u;
00249 for ( q1=0 ; q1<p ; ++q1 ) {
00250 int twidx=0;
00251 Fout[ k ] = scratchbuf[0];
00252 for (q=1;q<p;++q ) {
00253 twidx += static_cast<int>(fstride) * k;
00254 if (twidx>=Norig) twidx-=Norig;
00255 t=scratchbuf[q] * twiddles[twidx];
00256 Fout[ k ] += t;
00257 }
00258 k += m;
00259 }
00260 }
00261 }
00262 };
00263
00264 template <typename _Scalar>
00265 struct kissfft_impl
00266 {
00267 typedef _Scalar Scalar;
00268 typedef std::complex<Scalar> Complex;
00269
00270 void clear()
00271 {
00272 m_plans.clear();
00273 m_realTwiddles.clear();
00274 }
00275
00276 inline
00277 void fwd( Complex * dst,const Complex *src,int nfft)
00278 {
00279 get_plan(nfft,false).work(0, dst, src, 1,1);
00280 }
00281
00282 inline
00283 void fwd2( Complex * dst,const Complex *src,int n0,int n1)
00284 {
00285 EIGEN_UNUSED_VARIABLE(dst);
00286 EIGEN_UNUSED_VARIABLE(src);
00287 EIGEN_UNUSED_VARIABLE(n0);
00288 EIGEN_UNUSED_VARIABLE(n1);
00289 }
00290
00291 inline
00292 void inv2( Complex * dst,const Complex *src,int n0,int n1)
00293 {
00294 EIGEN_UNUSED_VARIABLE(dst);
00295 EIGEN_UNUSED_VARIABLE(src);
00296 EIGEN_UNUSED_VARIABLE(n0);
00297 EIGEN_UNUSED_VARIABLE(n1);
00298 }
00299
00300
00301
00302
00303
00304 inline
00305 void fwd( Complex * dst,const Scalar * src,int nfft)
00306 {
00307 if ( nfft&3 ) {
00308
00309 m_tmpBuf1.resize(nfft);
00310 get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
00311 std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
00312 }else{
00313 int ncfft = nfft>>1;
00314 int ncfft2 = nfft>>2;
00315 Complex * rtw = real_twiddles(ncfft2);
00316
00317
00318 fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
00319 Complex dc = dst[0].real() + dst[0].imag();
00320 Complex nyquist = dst[0].real() - dst[0].imag();
00321 int k;
00322 for ( k=1;k <= ncfft2 ; ++k ) {
00323 Complex fpk = dst[k];
00324 Complex fpnk = conj(dst[ncfft-k]);
00325 Complex f1k = fpk + fpnk;
00326 Complex f2k = fpk - fpnk;
00327 Complex tw= f2k * rtw[k-1];
00328 dst[k] = (f1k + tw) * Scalar(.5);
00329 dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
00330 }
00331 dst[0] = dc;
00332 dst[ncfft] = nyquist;
00333 }
00334 }
00335
00336
00337 inline
00338 void inv(Complex * dst,const Complex *src,int nfft)
00339 {
00340 get_plan(nfft,true).work(0, dst, src, 1,1);
00341 }
00342
00343
00344 inline
00345 void inv( Scalar * dst,const Complex * src,int nfft)
00346 {
00347 if (nfft&3) {
00348 m_tmpBuf1.resize(nfft);
00349 m_tmpBuf2.resize(nfft);
00350 std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
00351 for (int k=1;k<(nfft>>1)+1;++k)
00352 m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
00353 inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
00354 for (int k=0;k<nfft;++k)
00355 dst[k] = m_tmpBuf2[k].real();
00356 }else{
00357
00358 int ncfft = nfft>>1;
00359 int ncfft2 = nfft>>2;
00360 Complex * rtw = real_twiddles(ncfft2);
00361 m_tmpBuf1.resize(ncfft);
00362 m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
00363 for (int k = 1; k <= ncfft / 2; ++k) {
00364 Complex fk = src[k];
00365 Complex fnkc = conj(src[ncfft-k]);
00366 Complex fek = fk + fnkc;
00367 Complex tmp = fk - fnkc;
00368 Complex fok = tmp * conj(rtw[k-1]);
00369 m_tmpBuf1[k] = fek + fok;
00370 m_tmpBuf1[ncfft-k] = conj(fek - fok);
00371 }
00372 get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
00373 }
00374 }
00375
00376 protected:
00377 typedef kiss_cpx_fft<Scalar> PlanData;
00378 typedef std::map<int,PlanData> PlanMap;
00379
00380 PlanMap m_plans;
00381 std::map<int, std::vector<Complex> > m_realTwiddles;
00382 std::vector<Complex> m_tmpBuf1;
00383 std::vector<Complex> m_tmpBuf2;
00384
00385 inline
00386 int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
00387
00388 inline
00389 PlanData & get_plan(int nfft, bool inverse)
00390 {
00391
00392 PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
00393 if ( pd.m_twiddles.size() == 0 ) {
00394 pd.make_twiddles(nfft,inverse);
00395 pd.factorize(nfft);
00396 }
00397 return pd;
00398 }
00399
00400 inline
00401 Complex * real_twiddles(int ncfft2)
00402 {
00403 using std::acos;
00404 std::vector<Complex> & twidref = m_realTwiddles[ncfft2];
00405 if ( (int)twidref.size() != ncfft2 ) {
00406 twidref.resize(ncfft2);
00407 int ncfft= ncfft2<<1;
00408 Scalar pi = acos( Scalar(-1) );
00409 for (int k=1;k<=ncfft2;++k)
00410 twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
00411 }
00412 return &twidref[0];
00413 }
00414 };
00415
00416 }
00417
00418 }
00419
00420