dae_optimization_tutorial.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_optimal_control.hpp>
00036 #include <acado_gnuplot.hpp>
00037 
00038 
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043     // INTRODUCE THE VARIABLES:
00044     // -------------------------
00045     DifferentialState         x;
00046     DifferentialState         l;
00047     AlgebraicState            z;
00048     Control                   u;
00049     DifferentialEquation      f;
00050 
00051     const double t_start =  0.0;
00052     const double t_end   = 10.0;
00053 
00054     // DEFINE A DIFFERENTIAL EQUATION:
00055     // -------------------------------
00056     f << dot(x) == -x + 0.5*x*x + u + 0.5*z;
00057     f << dot(l) ==  x*x + 3.0*u*u            ;
00058     f <<      0 ==  z + exp(z) - 1.0 + x     ;
00059 
00060 
00061     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00062     // ----------------------------------
00063     OCP ocp( t_start, t_end, 10 );
00064     ocp.minimizeMayerTerm( l );
00065 
00066     ocp.subjectTo( f );
00067     ocp.subjectTo( AT_START, x == 1.0 );
00068     ocp.subjectTo( AT_START, l == 0.0 );
00069 
00070     GnuplotWindow window;
00071         window.addSubplot(x,"DIFFERENTIAL STATE  x");
00072         window.addSubplot(z,"ALGEBRAIC STATE  z"   );
00073         window.addSubplot(u,"CONTROL u"            );
00074 
00075 
00076     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
00077     // ----------------------------------------------------
00078     OptimizationAlgorithm algorithm(ocp);
00079 
00080         algorithm.set( ABSOLUTE_TOLERANCE   , 1.0e-7        );
00081         algorithm.set( INTEGRATOR_TOLERANCE , 1.0e-7        );
00082         algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN );
00083         //algorithm.set( GLOBALIZATION_STRATEGY, GS_FULLSTEP );
00084 
00085         algorithm << window;
00086     algorithm.solve();
00087 
00088     return 0;
00089 }
00090 
00091 
00092 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:58:04