Helper class for computing matrix functions of atomic matrices. More...
#include <MatrixFunctionAtomic.h>
Public Types | |
typedef MatrixType::Index | Index |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef MatrixType::Scalar | Scalar |
typedef internal::stem_function < Scalar >::type | StemFunction |
typedef Matrix< Scalar, MatrixType::RowsAtCompileTime, 1 > | VectorType |
Public Member Functions | |
MatrixType | compute (const MatrixType &A) |
Compute matrix function of atomic matrix. | |
MatrixFunctionAtomic (StemFunction f) | |
Constructor. | |
Private Member Functions | |
void | computeMu () |
Compute m_mu . | |
MatrixFunctionAtomic (const MatrixFunctionAtomic &) | |
MatrixFunctionAtomic & | operator= (const MatrixFunctionAtomic &) |
bool | taylorConverged (Index s, const MatrixType &F, const MatrixType &Fincr, const MatrixType &P) |
Determine whether Taylor series has converged. | |
Private Attributes | |
Index | m_Arows |
Size of matrix function. | |
MatrixType | m_Ashifted |
Argument shifted by mean of eigenvalues. | |
Scalar | m_avgEival |
Mean of eigenvalues. | |
StemFunction * | m_f |
Pointer to scalar function. | |
RealScalar | m_mu |
Constant used to determine whether Taylor series has converged. |
Helper class for computing matrix functions of atomic matrices.
Definition at line 24 of file MatrixFunctionAtomic.h.
typedef MatrixType::Index Eigen::MatrixFunctionAtomic< MatrixType >::Index |
Definition at line 29 of file MatrixFunctionAtomic.h.
typedef NumTraits<Scalar>::Real Eigen::MatrixFunctionAtomic< MatrixType >::RealScalar |
Definition at line 30 of file MatrixFunctionAtomic.h.
typedef MatrixType::Scalar Eigen::MatrixFunctionAtomic< MatrixType >::Scalar |
Definition at line 28 of file MatrixFunctionAtomic.h.
typedef internal::stem_function<Scalar>::type Eigen::MatrixFunctionAtomic< MatrixType >::StemFunction |
Definition at line 31 of file MatrixFunctionAtomic.h.
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> Eigen::MatrixFunctionAtomic< MatrixType >::VectorType |
Definition at line 32 of file MatrixFunctionAtomic.h.
Eigen::MatrixFunctionAtomic< MatrixType >::MatrixFunctionAtomic | ( | StemFunction | f | ) | [inline] |
Constructor.
[in] | f | matrix function to compute. |
Definition at line 37 of file MatrixFunctionAtomic.h.
Eigen::MatrixFunctionAtomic< MatrixType >::MatrixFunctionAtomic | ( | const MatrixFunctionAtomic< MatrixType > & | ) | [private] |
MatrixType Eigen::MatrixFunctionAtomic< MatrixType >::compute | ( | const MatrixType & | A | ) |
Compute matrix function of atomic matrix.
[in] | A | argument of matrix function, should be upper triangular and atomic |
Definition at line 71 of file MatrixFunctionAtomic.h.
void Eigen::MatrixFunctionAtomic< MatrixType >::computeMu | ( | ) | [private] |
Compute m_mu
.
Definition at line 95 of file MatrixFunctionAtomic.h.
MatrixFunctionAtomic& Eigen::MatrixFunctionAtomic< MatrixType >::operator= | ( | const MatrixFunctionAtomic< MatrixType > & | ) | [private] |
bool Eigen::MatrixFunctionAtomic< MatrixType >::taylorConverged | ( | Index | s, |
const MatrixType & | F, | ||
const MatrixType & | Fincr, | ||
const MatrixType & | P | ||
) | [private] |
Determine whether Taylor series has converged.
Definition at line 105 of file MatrixFunctionAtomic.h.
Index Eigen::MatrixFunctionAtomic< MatrixType >::m_Arows [private] |
Size of matrix function.
Definition at line 58 of file MatrixFunctionAtomic.h.
MatrixType Eigen::MatrixFunctionAtomic< MatrixType >::m_Ashifted [private] |
Argument shifted by mean of eigenvalues.
Definition at line 64 of file MatrixFunctionAtomic.h.
Scalar Eigen::MatrixFunctionAtomic< MatrixType >::m_avgEival [private] |
Mean of eigenvalues.
Definition at line 61 of file MatrixFunctionAtomic.h.
StemFunction* Eigen::MatrixFunctionAtomic< MatrixType >::m_f [private] |
Pointer to scalar function.
Definition at line 55 of file MatrixFunctionAtomic.h.
RealScalar Eigen::MatrixFunctionAtomic< MatrixType >::m_mu [private] |
Constant used to determine whether Taylor series has converged.
Definition at line 67 of file MatrixFunctionAtomic.h.