00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035 #include "calc_leg_features.h"
00036
00037 #include "opencv/cxcore.h"
00038 #include "opencv/cv.h"
00039
00040 using namespace laser_processor;
00041 using namespace std;
00042
00043 vector<float> calcLegFeatures(SampleSet* cluster, const sensor_msgs::LaserScan& scan)
00044 {
00045
00046 vector<float> features;
00047
00048
00049 int num_points = cluster->size();
00050
00051
00052
00053 float x_mean = 0.0;
00054 float y_mean = 0.0;
00055 vector<float> x_median_set;
00056 vector<float> y_median_set;
00057 for (SampleSet::iterator i = cluster->begin();
00058 i != cluster->end();
00059 i++)
00060
00061 {
00062 x_mean += ((*i)->x)/num_points;
00063 y_mean += ((*i)->y)/num_points;
00064 x_median_set.push_back((*i)->x);
00065 y_median_set.push_back((*i)->y);
00066 }
00067
00068 std::sort(x_median_set.begin(), x_median_set.end());
00069 std::sort(y_median_set.begin(), y_median_set.end());
00070
00071 float x_median = 0.5 * ( *(x_median_set.begin() + (num_points-1)/2) + *(x_median_set.begin() + num_points/2) );
00072 float y_median = 0.5 * ( *(y_median_set.begin() + (num_points-1)/2) + *(y_median_set.begin() + num_points/2) );
00073
00074
00075
00076 double sum_std_diff = 0.0;
00077 double sum_med_diff = 0.0;
00078
00079
00080 for (SampleSet::iterator i = cluster->begin();
00081 i != cluster->end();
00082 i++)
00083
00084 {
00085 sum_std_diff += pow( (*i)->x - x_mean, 2) + pow((*i)->y - y_mean, 2);
00086 sum_med_diff += sqrt(pow( (*i)->x - x_median, 2) + pow((*i)->y - y_median, 2));
00087 }
00088
00089 float std = sqrt( 1.0/(num_points - 1.0) * sum_std_diff);
00090 float avg_median_dev = sum_med_diff / num_points;
00091
00092 features.push_back(std);
00093 features.push_back(avg_median_dev);
00094
00095
00096
00097 SampleSet::iterator first = cluster->begin();
00098 SampleSet::iterator last = cluster->end();
00099 last--;
00100
00101
00102 int prev_ind = (*first)->index - 1;
00103 int next_ind = (*last)->index + 1;
00104
00105 float prev_jump = 0;
00106 float next_jump = 0;
00107
00108 if (prev_ind >= 0)
00109 {
00110 Sample* prev = Sample::Extract(prev_ind, scan);
00111 if (prev)
00112 {
00113 prev_jump = sqrt( pow( (*first)->x - prev->x, 2) + pow((*first)->y - prev->y, 2));
00114 delete prev;
00115 }
00116
00117 }
00118
00119 if (next_ind < (int)scan.ranges.size())
00120 {
00121 Sample* next = Sample::Extract(next_ind, scan);
00122 if (next)
00123 {
00124 next_jump = sqrt( pow( (*last)->x - next->x, 2) + pow((*last)->y - next->y, 2));
00125 delete next;
00126 }
00127 }
00128
00129 features.push_back(prev_jump);
00130 features.push_back(next_jump);
00131
00132
00133 float width = sqrt( pow( (*first)->x - (*last)->x, 2) + pow((*first)->y - (*last)->y, 2));
00134 features.push_back(width);
00135
00136
00137
00138 CvMat* points = cvCreateMat( num_points, 2, CV_64FC1);
00139 {
00140 int j = 0;
00141 for (SampleSet::iterator i = cluster->begin();
00142 i != cluster->end();
00143 i++)
00144 {
00145 cvmSet(points, j, 0, (*i)->x - x_mean);
00146 cvmSet(points, j, 1, (*i)->y - y_mean);
00147 j++;
00148 }
00149 }
00150
00151 CvMat* W = cvCreateMat( 2, 2, CV_64FC1);
00152 CvMat* U = cvCreateMat( num_points, 2, CV_64FC1);
00153 CvMat* V = cvCreateMat( 2, 2, CV_64FC1);
00154 cvSVD(points, W, U, V);
00155
00156 CvMat* rot_points = cvCreateMat(num_points, 2, CV_64FC1);
00157 cvMatMul(U,W,rot_points);
00158
00159 float linearity = 0.0;
00160 for (int i = 0; i < num_points; i++)
00161 {
00162 linearity += pow(cvmGet(rot_points, i, 1), 2);
00163 }
00164
00165 cvReleaseMat(&points); points = 0;
00166 cvReleaseMat(&W); W = 0;
00167 cvReleaseMat(&U); U = 0;
00168 cvReleaseMat(&V); V = 0;
00169 cvReleaseMat(&rot_points); rot_points = 0;
00170
00171 features.push_back(linearity);
00172
00173
00174 CvMat* A = cvCreateMat( num_points, 3, CV_64FC1);
00175 CvMat* B = cvCreateMat( num_points, 1, CV_64FC1);
00176 {
00177 int j = 0;
00178 for (SampleSet::iterator i = cluster->begin();
00179 i != cluster->end();
00180 i++)
00181 {
00182 float x = (*i)->x;
00183 float y = (*i)->y;
00184
00185 cvmSet(A, j, 0, -2.0*x);
00186 cvmSet(A, j, 1, -2.0*y);
00187 cvmSet(A, j, 2, 1);
00188
00189 cvmSet(B, j, 0, -pow(x,2)-pow(y,2));
00190 j++;
00191 }
00192 }
00193 CvMat* sol = cvCreateMat( 3, 1, CV_64FC1);
00194
00195 cvSolve(A, B, sol, CV_SVD);
00196
00197 float xc = cvmGet(sol, 0, 0);
00198 float yc = cvmGet(sol, 1, 0);
00199 float rc = sqrt(pow(xc,2) + pow(yc,2) - cvmGet(sol, 2, 0));
00200
00201 cvReleaseMat(&A); A = 0;
00202 cvReleaseMat(&B); B = 0;
00203 cvReleaseMat(&sol); sol = 0;
00204
00205 float circularity = 0.0;
00206 for (SampleSet::iterator i = cluster->begin();
00207 i != cluster->end();
00208 i++)
00209 {
00210 circularity += pow( rc - sqrt( pow(xc - (*i)->x, 2) + pow( yc - (*i)->y, 2) ), 2);
00211 }
00212
00213 features.push_back(circularity);
00214
00215
00216 float radius = rc;
00217
00218 features.push_back(radius);
00219
00220
00221 float mean_curvature = 0.0;
00222
00223
00224 float boundary_length = 0.0;
00225 float last_boundary_seg = 0.0;
00226
00227 float boundary_regularity = 0.0;
00228 double sum_boundary_reg_sq = 0.0;
00229
00230
00231 SampleSet::iterator left = cluster->begin();
00232 left++;
00233 left++;
00234 SampleSet::iterator mid = cluster->begin();
00235 mid++;
00236 SampleSet::iterator right = cluster->begin();
00237
00238 float ang_diff = 0.0;
00239
00240 while (left != cluster->end())
00241 {
00242 float mlx = (*left)->x - (*mid)->x;
00243 float mly = (*left)->y - (*mid)->y;
00244 float L_ml = sqrt(mlx*mlx + mly*mly);
00245
00246 float mrx = (*right)->x - (*mid)->x;
00247 float mry = (*right)->y - (*mid)->y;
00248 float L_mr = sqrt(mrx*mrx + mry*mry);
00249
00250 float lrx = (*left)->x - (*right)->x;
00251 float lry = (*left)->y - (*right)->y;
00252 float L_lr = sqrt(lrx*lrx + lry*lry);
00253
00254 boundary_length += L_mr;
00255 sum_boundary_reg_sq += L_mr*L_mr;
00256 last_boundary_seg = L_ml;
00257
00258 float A = (mlx*mrx + mly*mry) / pow(L_mr, 2);
00259 float B = (mlx*mry - mly*mrx) / pow(L_mr, 2);
00260
00261 float th = atan2(B,A);
00262
00263 if (th < 0)
00264 th += 2*M_PI;
00265
00266 ang_diff += th / num_points;
00267
00268 float s = 0.5*(L_ml+L_mr+L_lr);
00269 float area = sqrt( s*(s-L_ml)*(s-L_mr)*(s-L_lr) );
00270
00271 if (th > 0)
00272 mean_curvature += 4*(area)/(L_ml*L_mr*L_lr*num_points);
00273 else
00274 mean_curvature -= 4*(area)/(L_ml*L_mr*L_lr*num_points);
00275
00276 left++;
00277 mid++;
00278 right++;
00279 }
00280
00281 boundary_length += last_boundary_seg;
00282 sum_boundary_reg_sq += last_boundary_seg*last_boundary_seg;
00283
00284 boundary_regularity = sqrt( (sum_boundary_reg_sq - pow(boundary_length,2)/num_points)/(num_points - 1) );
00285
00286 features.push_back(boundary_length);
00287 features.push_back(ang_diff);
00288 features.push_back(mean_curvature);
00289
00290 features.push_back(boundary_regularity);
00291
00292
00293
00294 first = cluster->begin();
00295 mid = cluster->begin();
00296 mid++;
00297 last = cluster->end();
00298 last--;
00299
00300 double sum_iav = 0.0;
00301 double sum_iav_sq = 0.0;
00302
00303 while (mid != last)
00304 {
00305 float mlx = (*first)->x - (*mid)->x;
00306 float mly = (*first)->y - (*mid)->y;
00307
00308
00309 float mrx = (*last)->x - (*mid)->x;
00310 float mry = (*last)->y - (*mid)->y;
00311 float L_mr = sqrt(mrx*mrx + mry*mry);
00312
00313
00314
00315
00316
00317 float A = (mlx*mrx + mly*mry) / pow(L_mr, 2);
00318 float B = (mlx*mry - mly*mrx) / pow(L_mr, 2);
00319
00320 float th = atan2(B,A);
00321
00322 if (th < 0)
00323 th += 2*M_PI;
00324
00325 sum_iav += th;
00326 sum_iav_sq += th*th;
00327
00328 mid++;
00329 }
00330
00331 float iav = sum_iav / num_points;
00332 float std_iav = sqrt( (sum_iav_sq - pow(sum_iav,2)/num_points)/(num_points - 1) );
00333
00334 features.push_back(iav);
00335 features.push_back(std_iav);
00336
00337 return features;
00338 }