transformation_validation_euclidean.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of Willow Garage, Inc. nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  * $Id: transformation_validation_euclidean.hpp 3828 2012-01-05 22:51:04Z svn $
00037  *
00038  */
00039 #ifndef PCL_REGISTRATION_TRANSFORMATION_VALIDATION_EUCLIDEAN_IMPL_H_
00040 #define PCL_REGISTRATION_TRANSFORMATION_VALIDATION_EUCLIDEAN_IMPL_H_
00041 
00042 #include <pcl/registration/transformation_validation_euclidean.h>
00043 
00045 template <typename PointSource, typename PointTarget> double
00046 pcl::registration::TransformationValidationEuclidean<PointSource, PointTarget>::validateTransformation (
00047   const PointCloudSourceConstPtr &cloud_src,
00048   const PointCloudTargetConstPtr &cloud_tgt,
00049   const Eigen::Matrix4f &transformation_matrix)
00050 {
00051   double fitness_score = 0.0;
00052 
00053   // Transform the input dataset using the final transformation
00054   pcl::PointCloud<PointSource> input_transformed;
00055   transformPointCloud (*cloud_src, input_transformed, transformation_matrix);
00056 
00057   // Just in case
00058   if (!tree_)
00059     tree_.reset (new pcl::KdTreeFLANN<PointTarget>);
00060 
00061   tree_->setInputCloud (cloud_tgt);
00062 
00063   std::vector<int> nn_indices (1);
00064   std::vector<float> nn_dists (1);
00065 
00066   // For each point in the source dataset
00067   int nr = 0;
00068   for (size_t i = 0; i < input_transformed.points.size (); ++i)
00069   {
00070     // Find its nearest neighbor in the target
00071     tree_->nearestKSearch (input_transformed.points[i], 1, nn_indices, nn_dists);
00072     
00073     // Deal with occlusions (incomplete targets)
00074     if (nn_dists[0] > max_range_)
00075       continue;
00076 
00077     // Optimization: use getVector4fMap instead, but make sure that the last coordinate is 0!
00078     Eigen::Vector4f p1 (input_transformed.points[i].x,
00079                         input_transformed.points[i].y,
00080                         input_transformed.points[i].z, 0);
00081     Eigen::Vector4f p2 (cloud_tgt->points[nn_indices[0]].x,
00082                         cloud_tgt->points[nn_indices[0]].y,
00083                         cloud_tgt->points[nn_indices[0]].z, 0);
00084     // Calculate the fitness score
00085     fitness_score += fabs ((p1-p2).squaredNorm ());
00086     nr++;
00087   }
00088 
00089   if (nr > 0)
00090     return (fitness_score / nr);
00091   else
00092     return (std::numeric_limits<double>::max ());
00093 }
00094 
00095 #endif /* PCL_REGISTRATION_TRANSFORMATION_VALIDATION_EUCLIDEAN_IMPL_H_ */


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:18:53