Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040 #include <gtest/gtest.h>
00041 #include <pcl/point_cloud.h>
00042 #include <pcl/features/normal_3d.h>
00043 #include <pcl/features/ppf.h>
00044 #include <pcl/io/pcd_io.h>
00045
00046 using namespace pcl;
00047 using namespace pcl::io;
00048 using namespace std;
00049
00050 typedef search::KdTree<PointXYZ>::Ptr KdTreePtr;
00051
00052 PointCloud<PointXYZ> cloud;
00053 vector<int> indices;
00054 KdTreePtr tree;
00055
00057 TEST (PCL, PPFEstimation)
00058 {
00059
00060 NormalEstimation<PointXYZ, Normal> normal_estimation;
00061 PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
00062 normal_estimation.setInputCloud (cloud.makeShared ());
00063 boost::shared_ptr<vector<int> > indicesptr (new vector<int> (indices));
00064 normal_estimation.setIndices (indicesptr);
00065 normal_estimation.setSearchMethod (tree);
00066 normal_estimation.setKSearch (10);
00067 normal_estimation.compute (*normals);
00068
00069 PPFEstimation <PointXYZ, Normal, PPFSignature> ppf_estimation;
00070 ppf_estimation.setInputCloud (cloud.makeShared ());
00071 ppf_estimation.setInputNormals (normals);
00072 PointCloud<PPFSignature>::Ptr feature_cloud (new PointCloud<PPFSignature> ());
00073 ppf_estimation.compute (*feature_cloud);
00074
00075
00076 EXPECT_EQ (feature_cloud->points.size (), indices.size () * cloud.points.size ());
00077
00078
00079 EXPECT_TRUE (pcl_isnan (feature_cloud->points[0].f1));
00080 EXPECT_TRUE (pcl_isnan (feature_cloud->points[0].f2));
00081 EXPECT_TRUE (pcl_isnan (feature_cloud->points[0].f3));
00082 EXPECT_TRUE (pcl_isnan (feature_cloud->points[0].f4));
00083 EXPECT_TRUE (pcl_isnan (feature_cloud->points[0].alpha_m));
00084
00085 EXPECT_NEAR (feature_cloud->points[15127].f1, -2.51637, 1e-4);
00086 EXPECT_NEAR (feature_cloud->points[15127].f2, -0.00365916, 1e-4);
00087 EXPECT_NEAR (feature_cloud->points[15127].f3, -0.521141, 1e-4);
00088 EXPECT_NEAR (feature_cloud->points[15127].f4, 0.0106809, 1e-4);
00089 EXPECT_NEAR (feature_cloud->points[15127].alpha_m, -0.255664, 1e-4);
00090 EXPECT_NEAR (feature_cloud->points[30254].f1, 0.185142, 1e-4);
00091 EXPECT_NEAR (feature_cloud->points[30254].f2, 0.0425001, 1e-4);
00092 EXPECT_NEAR (feature_cloud->points[30254].f3, -0.191276, 1e-4);
00093 EXPECT_NEAR (feature_cloud->points[30254].f4, 0.0138508, 1e-4);
00094 EXPECT_NEAR (feature_cloud->points[30254].alpha_m, 2.42955, 1e-4);
00095 EXPECT_NEAR (feature_cloud->points[45381].f1, -1.96263, 1e-4);
00096 EXPECT_NEAR (feature_cloud->points[45381].f2, -0.431919, 1e-4);
00097 EXPECT_NEAR (feature_cloud->points[45381].f3, 0.868716, 1e-4);
00098 EXPECT_NEAR (feature_cloud->points[45381].f4, 0.140129, 1e-4);
00099 EXPECT_NEAR (feature_cloud->points[45381].alpha_m, -1.97276, 1e-4);
00100 }
00101
00102
00103 int
00104 main (int argc, char** argv)
00105 {
00106 if (argc < 2)
00107 {
00108 std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
00109 return (-1);
00110 }
00111
00112 if (loadPCDFile<PointXYZ> (argv[1], cloud) < 0)
00113 {
00114 std::cerr << "Failed to read test file. Please download `bun0.pcd` and pass its path to the test." << std::endl;
00115 return (-1);
00116 }
00117
00118 indices.resize (cloud.points.size ());
00119 for (int i = 0; i < static_cast<int> (indices.size ()); ++i)
00120 indices[i] = i;
00121
00122 tree.reset (new search::KdTree<PointXYZ> (false));
00123 tree->setInputCloud (cloud.makeShared ());
00124
00125 testing::InitGoogleTest (&argc, argv);
00126 return (RUN_ALL_TESTS ());
00127 }
00128