gicp.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2010, Willow Garage, Inc.
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of Willow Garage, Inc. nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *
00034  * $Id: gicp.hpp 6152 2012-07-04 22:58:53Z rusu $
00035  *
00036  */
00037 
00038 #include <boost/unordered_map.hpp>
00039 #include <pcl/registration/exceptions.h>
00040 
00042 template <typename PointSource, typename PointTarget> 
00043 template<typename PointT> void
00044 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeCovariances(typename pcl::PointCloud<PointT>::ConstPtr cloud, 
00045                                                                                     const typename pcl::KdTree<PointT>::Ptr kdtree,
00046                                                                                     std::vector<Eigen::Matrix3d>& cloud_covariances)
00047 {
00048   if (k_correspondences_ > int (cloud->size ()))
00049   {
00050     PCL_ERROR ("[pcl::GeneralizedIterativeClosestPoint::computeCovariances] Number or points in cloud (%zu) is less than k_correspondences_ (%zu)!\n", cloud->size (), k_correspondences_);
00051     return;
00052   }
00053 
00054   Eigen::Vector3d mean;
00055   std::vector<int> nn_indecies; nn_indecies.reserve (k_correspondences_);
00056   std::vector<float> nn_dist_sq; nn_dist_sq.reserve (k_correspondences_);
00057 
00058   // We should never get there but who knows
00059   if(cloud_covariances.size () < cloud->size ())
00060     cloud_covariances.resize (cloud->size ());
00061 
00062   typename pcl::PointCloud<PointT>::const_iterator points_iterator = cloud->begin ();
00063   std::vector<Eigen::Matrix3d>::iterator matrices_iterator = cloud_covariances.begin ();
00064   for(;
00065       points_iterator != cloud->end ();
00066       ++points_iterator, ++matrices_iterator)
00067   {
00068     const PointT &query_point = *points_iterator;
00069     Eigen::Matrix3d &cov = *matrices_iterator;
00070     // Zero out the cov and mean
00071     cov.setZero ();
00072     mean.setZero ();
00073 
00074     // Search for the K nearest neighbours
00075     kdtree->nearestKSearch(query_point, k_correspondences_, nn_indecies, nn_dist_sq);
00076     
00077     // Find the covariance matrix
00078     for(int j = 0; j < k_correspondences_; j++) {
00079       const PointT &pt = (*cloud)[nn_indecies[j]];
00080       
00081       mean[0] += pt.x;
00082       mean[1] += pt.y;
00083       mean[2] += pt.z;
00084       
00085       cov(0,0) += pt.x*pt.x;
00086       
00087       cov(1,0) += pt.y*pt.x;
00088       cov(1,1) += pt.y*pt.y;
00089       
00090       cov(2,0) += pt.z*pt.x;
00091       cov(2,1) += pt.z*pt.y;
00092       cov(2,2) += pt.z*pt.z;    
00093     }
00094   
00095     mean /= static_cast<double> (k_correspondences_);
00096     // Get the actual covariance
00097     for (int k = 0; k < 3; k++)
00098       for (int l = 0; l <= k; l++) 
00099       {
00100         cov(k,l) /= static_cast<double> (k_correspondences_);
00101         cov(k,l) -= mean[k]*mean[l];
00102         cov(l,k) = cov(k,l);
00103       }
00104     
00105     // Compute the SVD (covariance matrix is symmetric so U = V')
00106     Eigen::JacobiSVD<Eigen::Matrix3d> svd(cov, Eigen::ComputeFullU);
00107     cov.setZero ();
00108     Eigen::Matrix3d U = svd.matrixU ();
00109     // Reconstitute the covariance matrix with modified singular values using the column     // vectors in V.
00110     for(int k = 0; k < 3; k++) {
00111       Eigen::Vector3d col = U.col(k);
00112       double v = 1.; // biggest 2 singular values replaced by 1
00113       if(k == 2)   // smallest singular value replaced by gicp_epsilon
00114         v = gicp_epsilon_;
00115       cov+= v * col * col.transpose(); 
00116     }
00117   }
00118 }
00119 
00121 template <typename PointSource, typename PointTarget> void
00122 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeRDerivative(const Vector6d &x, const Eigen::Matrix3d &R, Vector6d& g) const
00123 {
00124   Eigen::Matrix3d dR_dPhi;
00125   Eigen::Matrix3d dR_dTheta;
00126   Eigen::Matrix3d dR_dPsi;
00127 
00128   double phi = x[3], theta = x[4], psi = x[5];
00129   
00130   double cphi = cos(phi), sphi = sin(phi);
00131   double ctheta = cos(theta), stheta = sin(theta);
00132   double cpsi = cos(psi), spsi = sin(psi);
00133       
00134   dR_dPhi(0,0) = 0.;
00135   dR_dPhi(1,0) = 0.;
00136   dR_dPhi(2,0) = 0.;
00137 
00138   dR_dPhi(0,1) = sphi*spsi + cphi*cpsi*stheta;
00139   dR_dPhi(1,1) = -cpsi*sphi + cphi*spsi*stheta;
00140   dR_dPhi(2,1) = cphi*ctheta;
00141 
00142   dR_dPhi(0,2) = cphi*spsi - cpsi*sphi*stheta;
00143   dR_dPhi(1,2) = -cphi*cpsi - sphi*spsi*stheta;
00144   dR_dPhi(2,2) = -ctheta*sphi;
00145 
00146   dR_dTheta(0,0) = -cpsi*stheta;
00147   dR_dTheta(1,0) = -spsi*stheta;
00148   dR_dTheta(2,0) = -ctheta;
00149 
00150   dR_dTheta(0,1) = cpsi*ctheta*sphi;
00151   dR_dTheta(1,1) = ctheta*sphi*spsi;
00152   dR_dTheta(2,1) = -sphi*stheta;
00153 
00154   dR_dTheta(0,2) = cphi*cpsi*ctheta;
00155   dR_dTheta(1,2) = cphi*ctheta*spsi;
00156   dR_dTheta(2,2) = -cphi*stheta;
00157 
00158   dR_dPsi(0,0) = -ctheta*spsi;
00159   dR_dPsi(1,0) = cpsi*ctheta;
00160   dR_dPsi(2,0) = 0.;
00161 
00162   dR_dPsi(0,1) = -cphi*cpsi - sphi*spsi*stheta;
00163   dR_dPsi(1,1) = -cphi*spsi + cpsi*sphi*stheta;
00164   dR_dPsi(2,1) = 0.;
00165 
00166   dR_dPsi(0,2) = cpsi*sphi - cphi*spsi*stheta;
00167   dR_dPsi(1,2) = sphi*spsi + cphi*cpsi*stheta;
00168   dR_dPsi(2,2) = 0.;
00169       
00170   g[3] = matricesInnerProd(dR_dPhi, R);
00171   g[4] = matricesInnerProd(dR_dTheta, R);
00172   g[5] = matricesInnerProd(dR_dPsi, R);
00173 }
00174 
00176 template <typename PointSource, typename PointTarget> void
00177 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::estimateRigidTransformationBFGS (const PointCloudSource &cloud_src, 
00178                                                                                                   const std::vector<int> &indices_src, 
00179                                                                                                   const PointCloudTarget &cloud_tgt, 
00180                                                                                                   const std::vector<int> &indices_tgt, 
00181                                                                                                   Eigen::Matrix4f &transformation_matrix)
00182 {
00183   if (indices_src.size () < 4)     // need at least 4 samples
00184   {
00185     PCL_THROW_EXCEPTION (NotEnoughPointsException, 
00186                          "[pcl::GeneralizedIterativeClosestPoint::estimateRigidTransformationBFGS] Need at least 4 points to estimate a transform! Source and target have " << indices_src.size () << " points!");
00187     return;
00188   }
00189   // Set the initial solution
00190   Vector6d x = Vector6d::Zero ();
00191   x[0] = transformation_matrix (0,3);
00192   x[1] = transformation_matrix (1,3);
00193   x[2] = transformation_matrix (2,3);
00194   x[3] = atan2 (transformation_matrix (2,1), transformation_matrix (2,2));
00195   x[4] = asin (-transformation_matrix (2,0));
00196   x[5] = atan2 (transformation_matrix (1,0), transformation_matrix (0,0));
00197 
00198   // Set temporary pointers
00199   tmp_src_ = &cloud_src;
00200   tmp_tgt_ = &cloud_tgt;
00201   tmp_idx_src_ = &indices_src;
00202   tmp_idx_tgt_ = &indices_tgt;
00203 
00204   // Optimize using forward-difference approximation LM
00205   const double gradient_tol = 1e-2;
00206   OptimizationFunctorWithIndices functor(this);
00207   BFGS<OptimizationFunctorWithIndices> bfgs (functor);
00208   bfgs.parameters.sigma = 0.01;
00209   bfgs.parameters.rho = 0.01;
00210   bfgs.parameters.tau1 = 9;
00211   bfgs.parameters.tau2 = 0.05;
00212   bfgs.parameters.tau3 = 0.5;
00213   bfgs.parameters.order = 3;
00214 
00215   int inner_iterations_ = 0;
00216   int result = bfgs.minimizeInit (x);
00217   do
00218   {
00219     inner_iterations_++;
00220     result = bfgs.minimizeOneStep (x);
00221     if(result)
00222     {
00223       break;
00224     }
00225     result = bfgs.testGradient(gradient_tol);
00226   } while(result == BFGSSpace::Running && inner_iterations_ < max_inner_iterations_);
00227   if(result == BFGSSpace::NoProgress || result == BFGSSpace::Success || inner_iterations_ == max_inner_iterations_)
00228   {
00229     PCL_DEBUG ("[pcl::registration::TransformationEstimationBFGS::estimateRigidTransformation]");
00230     PCL_DEBUG ("BFGS solver finished with exit code %i \n", result);
00231     transformation_matrix.setIdentity();
00232     applyState(transformation_matrix, x);
00233   }
00234   else
00235     PCL_THROW_EXCEPTION(SolverDidntConvergeException, 
00236                         "[pcl::" << getClassName () << "::TransformationEstimationBFGS::estimateRigidTransformation] BFGS solver didn't converge!");
00237 }
00238 
00240 template <typename PointSource, typename PointTarget> inline double
00241 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::OptimizationFunctorWithIndices::operator() (const Vector6d& x)
00242 {
00243   Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
00244   gicp_->applyState(transformation_matrix, x);
00245   double f = 0;
00246   int m = static_cast<int> (gicp_->tmp_idx_src_->size ());
00247   for (int i = 0; i < m; ++i)
00248   {
00249     // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
00250     Vector4fMapConst p_src = gicp_->tmp_src_->points[(*gicp_->tmp_idx_src_)[i]].getVector4fMap ();
00251     // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
00252     Vector4fMapConst p_tgt = gicp_->tmp_tgt_->points[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap ();
00253     Eigen::Vector4f pp (transformation_matrix * p_src);
00254     // Estimate the distance (cost function)
00255     // The last coordiante is still guaranteed to be set to 1.0
00256     Eigen::Vector3d res(pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2]);
00257     Eigen::Vector3d temp (gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * res);
00258     //increment= res'*temp/num_matches = temp'*M*temp/num_matches (we postpone 1/num_matches after the loop closes)
00259     f+= double(res.transpose() * temp);
00260   }
00261   return f/m;
00262 }
00263 
00265 template <typename PointSource, typename PointTarget> inline void
00266 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::OptimizationFunctorWithIndices::df (const Vector6d& x, Vector6d& g)
00267 {
00268   Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
00269   gicp_->applyState(transformation_matrix, x);
00270   //Zero out g
00271   g.setZero ();
00272   //Eigen::Vector3d g_t = g.head<3> ();
00273   Eigen::Matrix3d R = Eigen::Matrix3d::Zero ();
00274   int m = static_cast<int> (gicp_->tmp_idx_src_->size ());
00275   for (int i = 0; i < m; ++i)
00276   {
00277     // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
00278     Vector4fMapConst p_src = gicp_->tmp_src_->points[(*gicp_->tmp_idx_src_)[i]].getVector4fMap ();
00279     // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
00280     Vector4fMapConst p_tgt = gicp_->tmp_tgt_->points[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap ();
00281 
00282     Eigen::Vector4f pp (transformation_matrix * p_src);
00283     // The last coordiante is still guaranteed to be set to 1.0
00284     Eigen::Vector3d res (pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2]);
00285     // temp = M*res
00286     Eigen::Vector3d temp (gicp_->mahalanobis ((*gicp_->tmp_idx_src_)[i]) * res);
00287     // Increment translation gradient
00288     // g.head<3> ()+= 2*M*res/num_matches (we postpone 2/num_matches after the loop closes)
00289     g.head<3> ()+= temp;
00290     // Increment rotation gradient
00291     pp = gicp_->base_transformation_ * p_src;
00292     Eigen::Vector3d p_src3 (pp[0], pp[1], pp[2]);
00293     R+= p_src3 * temp.transpose();
00294   }
00295   g.head<3> ()*= 2.0/m;
00296   R*= 2.0/m;
00297   gicp_->computeRDerivative(x, R, g);
00298 }
00299 
00301 template <typename PointSource, typename PointTarget> inline void
00302 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::OptimizationFunctorWithIndices::fdf (const Vector6d& x, double& f, Vector6d& g)
00303 {
00304   Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
00305   gicp_->applyState(transformation_matrix, x);
00306   f = 0;
00307   g.setZero ();
00308   Eigen::Matrix3d R = Eigen::Matrix3d::Zero ();
00309   const int m = static_cast<const int> (gicp_->tmp_idx_src_->size ());
00310   for (int i = 0; i < m; ++i)
00311   {
00312     // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
00313     Vector4fMapConst p_src = gicp_->tmp_src_->points[(*gicp_->tmp_idx_src_)[i]].getVector4fMap ();
00314     // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
00315     Vector4fMapConst p_tgt = gicp_->tmp_tgt_->points[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap ();
00316     Eigen::Vector4f pp (transformation_matrix * p_src);
00317     // The last coordiante is still guaranteed to be set to 1.0
00318     Eigen::Vector3d res (pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2]);
00319     // temp = M*res
00320     Eigen::Vector3d temp (gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * res);
00321     // Increment total error
00322     f+= double(res.transpose() * temp);
00323     // Increment translation gradient
00324     // g.head<3> ()+= 2*M*res/num_matches (we postpone 2/num_matches after the loop closes)
00325     g.head<3> ()+= temp;
00326     pp = gicp_->base_transformation_ * p_src;
00327     Eigen::Vector3d p_src3 (pp[0], pp[1], pp[2]);
00328     // Increment rotation gradient
00329     R+= p_src3 * temp.transpose();    
00330   }
00331   f/= double(m);
00332   g.head<3> ()*= double(2.0/m);
00333   R*= 2.0/m;
00334   gicp_->computeRDerivative(x, R, g);
00335 }
00336 
00338 template <typename PointSource, typename PointTarget> inline void
00339 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeTransformation (PointCloudSource &output, const Eigen::Matrix4f& guess)
00340 {
00341   using namespace std;
00342   // Difference between consecutive transforms
00343   double delta = 0;
00344   // Get the size of the target
00345   const size_t N = indices_->size ();
00346   // Set the mahalanobis matrices to identity
00347   mahalanobis_.resize (N, Eigen::Matrix3d::Identity ());
00348   // Compute target cloud covariance matrices
00349   computeCovariances<PointTarget> (target_, tree_, target_covariances_);
00350   // Compute input cloud covariance matrices
00351   computeCovariances<PointSource> (input_, input_tree_, input_covariances_);
00352 
00353   base_transformation_ = guess;
00354   nr_iterations_ = 0;
00355   converged_ = false;
00356   double dist_threshold = corr_dist_threshold_ * corr_dist_threshold_;
00357   std::vector<int> nn_indices (1);
00358   std::vector<float> nn_dists (1);
00359 
00360   while(!converged_)
00361   {
00362     size_t cnt = 0;
00363     std::vector<int> source_indices (indices_->size ());
00364     std::vector<int> target_indices (indices_->size ());
00365 
00366     // guess corresponds to base_t and transformation_ to t
00367     Eigen::Matrix4d transform_R = Eigen::Matrix4d::Zero ();
00368     for(size_t i = 0; i < 4; i++)
00369       for(size_t j = 0; j < 4; j++)
00370         for(size_t k = 0; k < 4; k++)
00371           transform_R(i,j)+= double(transformation_(i,k)) * double(guess(k,j));
00372 
00373     Eigen::Matrix3d R = transform_R.topLeftCorner<3,3> ();
00374 
00375     for (size_t i = 0; i < N; i++)
00376     {
00377       PointSource query = output[i];
00378       query.getVector4fMap () = guess * query.getVector4fMap ();
00379       query.getVector4fMap () = transformation_ * query.getVector4fMap ();
00380 
00381       if (!searchForNeighbors (query, nn_indices, nn_dists))
00382       {
00383         PCL_ERROR ("[pcl::%s::computeTransformation] Unable to find a nearest neighbor in the target dataset for point %d in the source!\n", getClassName ().c_str (), (*indices_)[i]);
00384         return;
00385       }
00386       
00387       // Check if the distance to the nearest neighbor is smaller than the user imposed threshold
00388       if (nn_dists[0] < dist_threshold)
00389       {
00390         Eigen::Matrix3d &C1 = input_covariances_[i];
00391         Eigen::Matrix3d &C2 = target_covariances_[nn_indices[0]];
00392         Eigen::Matrix3d &M = mahalanobis_[i];
00393         // M = R*C1
00394         M = R * C1;
00395         // temp = M*R' + C2 = R*C1*R' + C2
00396         Eigen::Matrix3d temp = M * R.transpose();        
00397         temp+= C2;
00398         // M = temp^-1
00399         M = temp.inverse ();
00400         source_indices[cnt] = static_cast<int> (i);
00401         target_indices[cnt] = nn_indices[0];
00402         cnt++;
00403       }
00404     }
00405     // Resize to the actual number of valid correspondences
00406     source_indices.resize(cnt); target_indices.resize(cnt);
00407     /* optimize transformation using the current assignment and Mahalanobis metrics*/
00408     previous_transformation_ = transformation_;
00409     //optimization right here
00410     try
00411     {
00412       rigid_transformation_estimation_(output, source_indices, *target_, target_indices, transformation_);
00413       /* compute the delta from this iteration */
00414       delta = 0.;
00415       for(int k = 0; k < 4; k++) {
00416         for(int l = 0; l < 4; l++) {
00417           double ratio = 1;
00418           if(k < 3 && l < 3) // rotation part of the transform
00419             ratio = 1./rotation_epsilon_;
00420           else
00421             ratio = 1./transformation_epsilon_;
00422           double c_delta = ratio*fabs(previous_transformation_(k,l) - transformation_(k,l));
00423           if(c_delta > delta)
00424             delta = c_delta;
00425         }
00426       }
00427     } 
00428     catch (PCLException &e)
00429     {
00430       PCL_DEBUG ("[pcl::%s::computeTransformation] Optimization issue %s\n", getClassName ().c_str (), e.what ());
00431       break;
00432     }
00433     nr_iterations_++;
00434     // Check for convergence
00435     if (nr_iterations_ >= max_iterations_ || delta < 1)
00436     {
00437       converged_ = true;
00438       previous_transformation_ = transformation_;
00439       PCL_DEBUG ("[pcl::%s::computeTransformation] Convergence reached. Number of iterations: %d out of %d. Transformation difference: %f\n",
00440                  getClassName ().c_str (), nr_iterations_, max_iterations_, (transformation_ - previous_transformation_).array ().abs ().sum ());
00441     } 
00442     else
00443       PCL_DEBUG ("[pcl::%s::computeTransformation] Convergence failed\n", getClassName ().c_str ());
00444   }
00445   //for some reason the static equivalent methode raises an error
00446   // final_transformation_.block<3,3> (0,0) = (transformation_.block<3,3> (0,0)) * (guess.block<3,3> (0,0));
00447   // final_transformation_.block <3, 1> (0, 3) = transformation_.block <3, 1> (0, 3) + guess.rightCols<1>.block <3, 1> (0, 3);
00448   final_transformation_.topLeftCorner (3,3) = previous_transformation_.topLeftCorner (3,3) * guess.topLeftCorner (3,3);
00449   final_transformation_(0,3) = previous_transformation_(0,3) + guess(0,3);
00450   final_transformation_(1,3) = previous_transformation_(1,3) + guess(1,3);
00451   final_transformation_(2,3) = previous_transformation_(2,3) + guess(2,3);
00452 }
00453 
00454 template <typename PointSource, typename PointTarget> void
00455 pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::applyState(Eigen::Matrix4f &t, const Vector6d& x) const
00456 {
00457   // !!! CAUTION Stanford GICP uses the Z Y X euler angles convention
00458   Eigen::Matrix3f R;
00459   R = Eigen::AngleAxisf (static_cast<float> (x[5]), Eigen::Vector3f::UnitZ ())
00460     * Eigen::AngleAxisf (static_cast<float> (x[4]), Eigen::Vector3f::UnitY ())
00461     * Eigen::AngleAxisf (static_cast<float> (x[3]), Eigen::Vector3f::UnitX ());
00462   t.topLeftCorner<3,3> () = R * t.topLeftCorner<3,3> ();
00463   Eigen::Vector4f T (static_cast<float> (x[0]), static_cast<float> (x[1]), static_cast<float> (x[2]), 0.0f);
00464   t.col (3) += T;
00465 }
00466 


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:15:18