example_normal_estimation.cpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  * Point Cloud Library (PCL) - www.pointclouds.org
00005  * Copyright (c) 2009-2011, Willow Garage, Inc.
00006  *
00007  * All rights reserved.
00008  *
00009  * Redistribution and use in source and binary forms, with or without
00010  * modification, are permitted provided that the following conditions
00011  * are met:
00012  *
00013  * * Redistributions of source code must retain the above copyright
00014  *   notice, this list of conditions and the following disclaimer.
00015  * * Redistributions in binary form must reproduce the above
00016  *   copyright notice, this list of conditions and the following
00017  *   disclaimer in the documentation and/or other materials provided
00018  *   with the distribution.
00019  * * Neither the name of Willow Garage, Inc. nor the names of its
00020  *   contributors may be used to endorse or promote products derived
00021  *   from this software without specific prior written permission.
00022  *
00023  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  * POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  * $Id: example_normal_estimation.cpp 4516 2012-02-17 08:03:46Z nizar $
00037  *
00038  */
00039 
00040 #include <iostream>
00041 
00042 #include <pcl/io/pcd_io.h>
00043 #include <pcl/point_types.h>
00044 #include <pcl/features/normal_3d.h>
00045 #include <pcl/kdtree/kdtree_flann.h>
00046 
00047 int
00048 main (int, char** argv)
00049 {
00050   std::string filename = argv[1];
00051   std::cout << "Reading " << filename << std::endl;
00052 
00053   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
00054 
00055   if (pcl::io::loadPCDFile<pcl::PointXYZ> (filename, *cloud) == -1) // load the file
00056   {
00057     PCL_ERROR ("Couldn't read file");
00058     return -1;
00059   }
00060 
00061   std::cout << "points: " << cloud->points.size () << std::endl;
00062 
00063   // Create the normal estimation class, and pass the input dataset to it
00064   pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimation;
00065   normal_estimation.setInputCloud (cloud);
00066 
00067   // Create an empty kdtree representation, and pass it to the normal estimation object.
00068   // Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
00069   pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
00070   normal_estimation.setSearchMethod (tree);
00071 
00072   // Output datasets
00073   pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
00074 
00075   // Use all neighbors in a sphere of radius 3cm
00076   normal_estimation.setRadiusSearch (0.03);
00077 
00078   // Compute the features
00079   normal_estimation.compute (*cloud_normals);
00080 
00081   // cloud_normals->points.size () should have the same size as the input cloud->points.size ()
00082   std::cout << "cloud_normals->points.size (): " << cloud_normals->points.size () << std::endl;
00083   return 0;
00084 }


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:14:53