00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "manipulation_msgs/GraspableObject.h"
00020 #include "geometry_msgs/Quaternion.h"
00021 #include "geometry_msgs/Pose.h"
00022
00023
00024 #include "geometry_msgs/PoseStamped.h"
00025 #include "object_manipulation_msgs/GraspPlanningErrorCode.h"
00026
00027 namespace object_manipulation_msgs
00028 {
00029 template <class ContainerAllocator>
00030 struct PlacePlanningRequest_ {
00031 typedef PlacePlanningRequest_<ContainerAllocator> Type;
00032
00033 PlacePlanningRequest_()
00034 : arm_name()
00035 , target()
00036 , default_orientation()
00037 , grasp_pose()
00038 , collision_object_name()
00039 , collision_support_surface_name()
00040 {
00041 }
00042
00043 PlacePlanningRequest_(const ContainerAllocator& _alloc)
00044 : arm_name(_alloc)
00045 , target(_alloc)
00046 , default_orientation(_alloc)
00047 , grasp_pose(_alloc)
00048 , collision_object_name(_alloc)
00049 , collision_support_surface_name(_alloc)
00050 {
00051 }
00052
00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00055
00056 typedef ::manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00057 ::manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00058
00059 typedef ::geometry_msgs::Quaternion_<ContainerAllocator> _default_orientation_type;
00060 ::geometry_msgs::Quaternion_<ContainerAllocator> default_orientation;
00061
00062 typedef ::geometry_msgs::Pose_<ContainerAllocator> _grasp_pose_type;
00063 ::geometry_msgs::Pose_<ContainerAllocator> grasp_pose;
00064
00065 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00066 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00067
00068 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00069 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00070
00071
00072 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > Ptr;
00073 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> const> ConstPtr;
00074 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00075 };
00076 typedef ::object_manipulation_msgs::PlacePlanningRequest_<std::allocator<void> > PlacePlanningRequest;
00077
00078 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest> PlacePlanningRequestPtr;
00079 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest const> PlacePlanningRequestConstPtr;
00080
00081
00082
00083 template <class ContainerAllocator>
00084 struct PlacePlanningResponse_ {
00085 typedef PlacePlanningResponse_<ContainerAllocator> Type;
00086
00087 PlacePlanningResponse_()
00088 : place_locations()
00089 , error_code()
00090 {
00091 }
00092
00093 PlacePlanningResponse_(const ContainerAllocator& _alloc)
00094 : place_locations(_alloc)
00095 , error_code(_alloc)
00096 {
00097 }
00098
00099 typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > _place_locations_type;
00100 std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > place_locations;
00101
00102 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _error_code_type;
00103 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> error_code;
00104
00105
00106 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > Ptr;
00107 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> const> ConstPtr;
00108 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00109 };
00110 typedef ::object_manipulation_msgs::PlacePlanningResponse_<std::allocator<void> > PlacePlanningResponse;
00111
00112 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse> PlacePlanningResponsePtr;
00113 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse const> PlacePlanningResponseConstPtr;
00114
00115
00116 struct PlacePlanning
00117 {
00118
00119 typedef PlacePlanningRequest Request;
00120 typedef PlacePlanningResponse Response;
00121 Request request;
00122 Response response;
00123
00124 typedef Request RequestType;
00125 typedef Response ResponseType;
00126 };
00127 }
00128
00129 namespace ros
00130 {
00131 namespace message_traits
00132 {
00133 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > : public TrueType {};
00134 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> const> : public TrueType {};
00135 template<class ContainerAllocator>
00136 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00137 static const char* value()
00138 {
00139 return "425cc653a090729532ef5197df5e5268";
00140 }
00141
00142 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00143 static const uint64_t static_value1 = 0x425cc653a0907295ULL;
00144 static const uint64_t static_value2 = 0x32ef5197df5e5268ULL;
00145 };
00146
00147 template<class ContainerAllocator>
00148 struct DataType< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00149 static const char* value()
00150 {
00151 return "object_manipulation_msgs/PlacePlanningRequest";
00152 }
00153
00154 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00155 };
00156
00157 template<class ContainerAllocator>
00158 struct Definition< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00159 static const char* value()
00160 {
00161 return "\n\
00162 \n\
00163 \n\
00164 string arm_name\n\
00165 \n\
00166 \n\
00167 manipulation_msgs/GraspableObject target\n\
00168 \n\
00169 \n\
00170 \n\
00171 \n\
00172 geometry_msgs/Quaternion default_orientation\n\
00173 \n\
00174 \n\
00175 geometry_msgs/Pose grasp_pose\n\
00176 \n\
00177 \n\
00178 \n\
00179 string collision_object_name\n\
00180 \n\
00181 \n\
00182 \n\
00183 string collision_support_surface_name\n\
00184 \n\
00185 \n\
00186 ================================================================================\n\
00187 MSG: manipulation_msgs/GraspableObject\n\
00188 # an object that the object_manipulator can work on\n\
00189 \n\
00190 # a graspable object can be represented in multiple ways. This message\n\
00191 # can contain all of them. Which one is actually used is up to the receiver\n\
00192 # of this message. When adding new representations, one must be careful that\n\
00193 # they have reasonable lightweight defaults indicating that that particular\n\
00194 # representation is not available.\n\
00195 \n\
00196 # the tf frame to be used as a reference frame when combining information from\n\
00197 # the different representations below\n\
00198 string reference_frame_id\n\
00199 \n\
00200 # potential recognition results from a database of models\n\
00201 # all poses are relative to the object reference pose\n\
00202 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00203 \n\
00204 # the point cloud itself\n\
00205 sensor_msgs/PointCloud cluster\n\
00206 \n\
00207 # a region of a PointCloud2 of interest\n\
00208 SceneRegion region\n\
00209 \n\
00210 # the name that this object has in the collision environment\n\
00211 string collision_name\n\
00212 ================================================================================\n\
00213 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00214 # Informs that a specific model from the Model Database has been \n\
00215 # identified at a certain location\n\
00216 \n\
00217 # the database id of the model\n\
00218 int32 model_id\n\
00219 \n\
00220 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00221 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00222 # leave this empty if providing an id in the model_id field\n\
00223 object_recognition_msgs/ObjectType type\n\
00224 \n\
00225 # the pose that it can be found in\n\
00226 geometry_msgs/PoseStamped pose\n\
00227 \n\
00228 # a measure of the confidence level in this detection result\n\
00229 float32 confidence\n\
00230 \n\
00231 # the name of the object detector that generated this detection result\n\
00232 string detector_name\n\
00233 \n\
00234 ================================================================================\n\
00235 MSG: object_recognition_msgs/ObjectType\n\
00236 ################################################## OBJECT ID #########################################################\n\
00237 \n\
00238 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00239 # object\n\
00240 \n\
00241 # The key of the found object: the unique identifier in the given db\n\
00242 string key\n\
00243 \n\
00244 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00245 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00246 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00247 # The object_recognition_core as a generic DB type that can read those fields\n\
00248 # Current examples:\n\
00249 # For CouchDB:\n\
00250 # type: 'CouchDB'\n\
00251 # root: 'http://localhost:5984'\n\
00252 # collection: 'object_recognition'\n\
00253 # For SQL household database:\n\
00254 # type: 'SqlHousehold'\n\
00255 # host: 'wgs36'\n\
00256 # port: 5432\n\
00257 # user: 'willow'\n\
00258 # password: 'willow'\n\
00259 # name: 'household_objects'\n\
00260 # module: 'tabletop'\n\
00261 string db\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: geometry_msgs/PoseStamped\n\
00265 # A Pose with reference coordinate frame and timestamp\n\
00266 Header header\n\
00267 Pose pose\n\
00268 \n\
00269 ================================================================================\n\
00270 MSG: std_msgs/Header\n\
00271 # Standard metadata for higher-level stamped data types.\n\
00272 # This is generally used to communicate timestamped data \n\
00273 # in a particular coordinate frame.\n\
00274 # \n\
00275 # sequence ID: consecutively increasing ID \n\
00276 uint32 seq\n\
00277 #Two-integer timestamp that is expressed as:\n\
00278 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00279 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00280 # time-handling sugar is provided by the client library\n\
00281 time stamp\n\
00282 #Frame this data is associated with\n\
00283 # 0: no frame\n\
00284 # 1: global frame\n\
00285 string frame_id\n\
00286 \n\
00287 ================================================================================\n\
00288 MSG: geometry_msgs/Pose\n\
00289 # A representation of pose in free space, composed of postion and orientation. \n\
00290 Point position\n\
00291 Quaternion orientation\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: geometry_msgs/Point\n\
00295 # This contains the position of a point in free space\n\
00296 float64 x\n\
00297 float64 y\n\
00298 float64 z\n\
00299 \n\
00300 ================================================================================\n\
00301 MSG: geometry_msgs/Quaternion\n\
00302 # This represents an orientation in free space in quaternion form.\n\
00303 \n\
00304 float64 x\n\
00305 float64 y\n\
00306 float64 z\n\
00307 float64 w\n\
00308 \n\
00309 ================================================================================\n\
00310 MSG: sensor_msgs/PointCloud\n\
00311 # This message holds a collection of 3d points, plus optional additional\n\
00312 # information about each point.\n\
00313 \n\
00314 # Time of sensor data acquisition, coordinate frame ID.\n\
00315 Header header\n\
00316 \n\
00317 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00318 # in the frame given in the header.\n\
00319 geometry_msgs/Point32[] points\n\
00320 \n\
00321 # Each channel should have the same number of elements as points array,\n\
00322 # and the data in each channel should correspond 1:1 with each point.\n\
00323 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00324 ChannelFloat32[] channels\n\
00325 \n\
00326 ================================================================================\n\
00327 MSG: geometry_msgs/Point32\n\
00328 # This contains the position of a point in free space(with 32 bits of precision).\n\
00329 # It is recommeded to use Point wherever possible instead of Point32. \n\
00330 # \n\
00331 # This recommendation is to promote interoperability. \n\
00332 #\n\
00333 # This message is designed to take up less space when sending\n\
00334 # lots of points at once, as in the case of a PointCloud. \n\
00335 \n\
00336 float32 x\n\
00337 float32 y\n\
00338 float32 z\n\
00339 ================================================================================\n\
00340 MSG: sensor_msgs/ChannelFloat32\n\
00341 # This message is used by the PointCloud message to hold optional data\n\
00342 # associated with each point in the cloud. The length of the values\n\
00343 # array should be the same as the length of the points array in the\n\
00344 # PointCloud, and each value should be associated with the corresponding\n\
00345 # point.\n\
00346 \n\
00347 # Channel names in existing practice include:\n\
00348 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00349 # This is opposite to usual conventions but remains for\n\
00350 # historical reasons. The newer PointCloud2 message has no\n\
00351 # such problem.\n\
00352 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00353 # (R,G,B) values packed into the least significant 24 bits,\n\
00354 # in order.\n\
00355 # \"intensity\" - laser or pixel intensity.\n\
00356 # \"distance\"\n\
00357 \n\
00358 # The channel name should give semantics of the channel (e.g.\n\
00359 # \"intensity\" instead of \"value\").\n\
00360 string name\n\
00361 \n\
00362 # The values array should be 1-1 with the elements of the associated\n\
00363 # PointCloud.\n\
00364 float32[] values\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: manipulation_msgs/SceneRegion\n\
00368 # Point cloud\n\
00369 sensor_msgs/PointCloud2 cloud\n\
00370 \n\
00371 # Indices for the region of interest\n\
00372 int32[] mask\n\
00373 \n\
00374 # One of the corresponding 2D images, if applicable\n\
00375 sensor_msgs/Image image\n\
00376 \n\
00377 # The disparity image, if applicable\n\
00378 sensor_msgs/Image disparity_image\n\
00379 \n\
00380 # Camera info for the camera that took the image\n\
00381 sensor_msgs/CameraInfo cam_info\n\
00382 \n\
00383 # a 3D region of interest for grasp planning\n\
00384 geometry_msgs/PoseStamped roi_box_pose\n\
00385 geometry_msgs/Vector3 roi_box_dims\n\
00386 \n\
00387 ================================================================================\n\
00388 MSG: sensor_msgs/PointCloud2\n\
00389 # This message holds a collection of N-dimensional points, which may\n\
00390 # contain additional information such as normals, intensity, etc. The\n\
00391 # point data is stored as a binary blob, its layout described by the\n\
00392 # contents of the \"fields\" array.\n\
00393 \n\
00394 # The point cloud data may be organized 2d (image-like) or 1d\n\
00395 # (unordered). Point clouds organized as 2d images may be produced by\n\
00396 # camera depth sensors such as stereo or time-of-flight.\n\
00397 \n\
00398 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00399 # points).\n\
00400 Header header\n\
00401 \n\
00402 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00403 # 1 and width is the length of the point cloud.\n\
00404 uint32 height\n\
00405 uint32 width\n\
00406 \n\
00407 # Describes the channels and their layout in the binary data blob.\n\
00408 PointField[] fields\n\
00409 \n\
00410 bool is_bigendian # Is this data bigendian?\n\
00411 uint32 point_step # Length of a point in bytes\n\
00412 uint32 row_step # Length of a row in bytes\n\
00413 uint8[] data # Actual point data, size is (row_step*height)\n\
00414 \n\
00415 bool is_dense # True if there are no invalid points\n\
00416 \n\
00417 ================================================================================\n\
00418 MSG: sensor_msgs/PointField\n\
00419 # This message holds the description of one point entry in the\n\
00420 # PointCloud2 message format.\n\
00421 uint8 INT8 = 1\n\
00422 uint8 UINT8 = 2\n\
00423 uint8 INT16 = 3\n\
00424 uint8 UINT16 = 4\n\
00425 uint8 INT32 = 5\n\
00426 uint8 UINT32 = 6\n\
00427 uint8 FLOAT32 = 7\n\
00428 uint8 FLOAT64 = 8\n\
00429 \n\
00430 string name # Name of field\n\
00431 uint32 offset # Offset from start of point struct\n\
00432 uint8 datatype # Datatype enumeration, see above\n\
00433 uint32 count # How many elements in the field\n\
00434 \n\
00435 ================================================================================\n\
00436 MSG: sensor_msgs/Image\n\
00437 # This message contains an uncompressed image\n\
00438 # (0, 0) is at top-left corner of image\n\
00439 #\n\
00440 \n\
00441 Header header # Header timestamp should be acquisition time of image\n\
00442 # Header frame_id should be optical frame of camera\n\
00443 # origin of frame should be optical center of cameara\n\
00444 # +x should point to the right in the image\n\
00445 # +y should point down in the image\n\
00446 # +z should point into to plane of the image\n\
00447 # If the frame_id here and the frame_id of the CameraInfo\n\
00448 # message associated with the image conflict\n\
00449 # the behavior is undefined\n\
00450 \n\
00451 uint32 height # image height, that is, number of rows\n\
00452 uint32 width # image width, that is, number of columns\n\
00453 \n\
00454 # The legal values for encoding are in file src/image_encodings.cpp\n\
00455 # If you want to standardize a new string format, join\n\
00456 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00457 \n\
00458 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00459 # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00460 \n\
00461 uint8 is_bigendian # is this data bigendian?\n\
00462 uint32 step # Full row length in bytes\n\
00463 uint8[] data # actual matrix data, size is (step * rows)\n\
00464 \n\
00465 ================================================================================\n\
00466 MSG: sensor_msgs/CameraInfo\n\
00467 # This message defines meta information for a camera. It should be in a\n\
00468 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00469 # image topics named:\n\
00470 #\n\
00471 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00472 # image - monochrome, distorted\n\
00473 # image_color - color, distorted\n\
00474 # image_rect - monochrome, rectified\n\
00475 # image_rect_color - color, rectified\n\
00476 #\n\
00477 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00478 # for producing the four processed image topics from image_raw and\n\
00479 # camera_info. The meaning of the camera parameters are described in\n\
00480 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00481 #\n\
00482 # The image_geometry package provides a user-friendly interface to\n\
00483 # common operations using this meta information. If you want to, e.g.,\n\
00484 # project a 3d point into image coordinates, we strongly recommend\n\
00485 # using image_geometry.\n\
00486 #\n\
00487 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00488 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00489 # indicates an uncalibrated camera.\n\
00490 \n\
00491 #######################################################################\n\
00492 # Image acquisition info #\n\
00493 #######################################################################\n\
00494 \n\
00495 # Time of image acquisition, camera coordinate frame ID\n\
00496 Header header # Header timestamp should be acquisition time of image\n\
00497 # Header frame_id should be optical frame of camera\n\
00498 # origin of frame should be optical center of camera\n\
00499 # +x should point to the right in the image\n\
00500 # +y should point down in the image\n\
00501 # +z should point into the plane of the image\n\
00502 \n\
00503 \n\
00504 #######################################################################\n\
00505 # Calibration Parameters #\n\
00506 #######################################################################\n\
00507 # These are fixed during camera calibration. Their values will be the #\n\
00508 # same in all messages until the camera is recalibrated. Note that #\n\
00509 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00510 # #\n\
00511 # The internal parameters can be used to warp a raw (distorted) image #\n\
00512 # to: #\n\
00513 # 1. An undistorted image (requires D and K) #\n\
00514 # 2. A rectified image (requires D, K, R) #\n\
00515 # The projection matrix P projects 3D points into the rectified image.#\n\
00516 #######################################################################\n\
00517 \n\
00518 # The image dimensions with which the camera was calibrated. Normally\n\
00519 # this will be the full camera resolution in pixels.\n\
00520 uint32 height\n\
00521 uint32 width\n\
00522 \n\
00523 # The distortion model used. Supported models are listed in\n\
00524 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00525 # simple model of radial and tangential distortion - is sufficent.\n\
00526 string distortion_model\n\
00527 \n\
00528 # The distortion parameters, size depending on the distortion model.\n\
00529 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00530 float64[] D\n\
00531 \n\
00532 # Intrinsic camera matrix for the raw (distorted) images.\n\
00533 # [fx 0 cx]\n\
00534 # K = [ 0 fy cy]\n\
00535 # [ 0 0 1]\n\
00536 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00537 # coordinates using the focal lengths (fx, fy) and principal point\n\
00538 # (cx, cy).\n\
00539 float64[9] K # 3x3 row-major matrix\n\
00540 \n\
00541 # Rectification matrix (stereo cameras only)\n\
00542 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00543 # stereo image plane so that epipolar lines in both stereo images are\n\
00544 # parallel.\n\
00545 float64[9] R # 3x3 row-major matrix\n\
00546 \n\
00547 # Projection/camera matrix\n\
00548 # [fx' 0 cx' Tx]\n\
00549 # P = [ 0 fy' cy' Ty]\n\
00550 # [ 0 0 1 0]\n\
00551 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00552 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00553 # is the normal camera intrinsic matrix for the rectified image.\n\
00554 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00555 # coordinates using the focal lengths (fx', fy') and principal point\n\
00556 # (cx', cy') - these may differ from the values in K.\n\
00557 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00558 # also have R = the identity and P[1:3,1:3] = K.\n\
00559 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00560 # position of the optical center of the second camera in the first\n\
00561 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00562 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00563 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00564 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00565 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00566 # the rectified image is given by:\n\
00567 # [u v w]' = P * [X Y Z 1]'\n\
00568 # x = u / w\n\
00569 # y = v / w\n\
00570 # This holds for both images of a stereo pair.\n\
00571 float64[12] P # 3x4 row-major matrix\n\
00572 \n\
00573 \n\
00574 #######################################################################\n\
00575 # Operational Parameters #\n\
00576 #######################################################################\n\
00577 # These define the image region actually captured by the camera #\n\
00578 # driver. Although they affect the geometry of the output image, they #\n\
00579 # may be changed freely without recalibrating the camera. #\n\
00580 #######################################################################\n\
00581 \n\
00582 # Binning refers here to any camera setting which combines rectangular\n\
00583 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00584 # resolution of the output image to\n\
00585 # (width / binning_x) x (height / binning_y).\n\
00586 # The default values binning_x = binning_y = 0 is considered the same\n\
00587 # as binning_x = binning_y = 1 (no subsampling).\n\
00588 uint32 binning_x\n\
00589 uint32 binning_y\n\
00590 \n\
00591 # Region of interest (subwindow of full camera resolution), given in\n\
00592 # full resolution (unbinned) image coordinates. A particular ROI\n\
00593 # always denotes the same window of pixels on the camera sensor,\n\
00594 # regardless of binning settings.\n\
00595 # The default setting of roi (all values 0) is considered the same as\n\
00596 # full resolution (roi.width = width, roi.height = height).\n\
00597 RegionOfInterest roi\n\
00598 \n\
00599 ================================================================================\n\
00600 MSG: sensor_msgs/RegionOfInterest\n\
00601 # This message is used to specify a region of interest within an image.\n\
00602 #\n\
00603 # When used to specify the ROI setting of the camera when the image was\n\
00604 # taken, the height and width fields should either match the height and\n\
00605 # width fields for the associated image; or height = width = 0\n\
00606 # indicates that the full resolution image was captured.\n\
00607 \n\
00608 uint32 x_offset # Leftmost pixel of the ROI\n\
00609 # (0 if the ROI includes the left edge of the image)\n\
00610 uint32 y_offset # Topmost pixel of the ROI\n\
00611 # (0 if the ROI includes the top edge of the image)\n\
00612 uint32 height # Height of ROI\n\
00613 uint32 width # Width of ROI\n\
00614 \n\
00615 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00616 # ROI in this message. Typically this should be False if the full image\n\
00617 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00618 # used).\n\
00619 bool do_rectify\n\
00620 \n\
00621 ================================================================================\n\
00622 MSG: geometry_msgs/Vector3\n\
00623 # This represents a vector in free space. \n\
00624 \n\
00625 float64 x\n\
00626 float64 y\n\
00627 float64 z\n\
00628 ";
00629 }
00630
00631 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00632 };
00633
00634 }
00635 }
00636
00637
00638 namespace ros
00639 {
00640 namespace message_traits
00641 {
00642 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > : public TrueType {};
00643 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> const> : public TrueType {};
00644 template<class ContainerAllocator>
00645 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00646 static const char* value()
00647 {
00648 return "0382b328d7a72bb56384d8d5a71b04a1";
00649 }
00650
00651 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
00652 static const uint64_t static_value1 = 0x0382b328d7a72bb5ULL;
00653 static const uint64_t static_value2 = 0x6384d8d5a71b04a1ULL;
00654 };
00655
00656 template<class ContainerAllocator>
00657 struct DataType< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00658 static const char* value()
00659 {
00660 return "object_manipulation_msgs/PlacePlanningResponse";
00661 }
00662
00663 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
00664 };
00665
00666 template<class ContainerAllocator>
00667 struct Definition< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00668 static const char* value()
00669 {
00670 return "\n\
00671 \n\
00672 geometry_msgs/PoseStamped[] place_locations\n\
00673 \n\
00674 \n\
00675 GraspPlanningErrorCode error_code\n\
00676 \n\
00677 \n\
00678 ================================================================================\n\
00679 MSG: geometry_msgs/PoseStamped\n\
00680 # A Pose with reference coordinate frame and timestamp\n\
00681 Header header\n\
00682 Pose pose\n\
00683 \n\
00684 ================================================================================\n\
00685 MSG: std_msgs/Header\n\
00686 # Standard metadata for higher-level stamped data types.\n\
00687 # This is generally used to communicate timestamped data \n\
00688 # in a particular coordinate frame.\n\
00689 # \n\
00690 # sequence ID: consecutively increasing ID \n\
00691 uint32 seq\n\
00692 #Two-integer timestamp that is expressed as:\n\
00693 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00694 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00695 # time-handling sugar is provided by the client library\n\
00696 time stamp\n\
00697 #Frame this data is associated with\n\
00698 # 0: no frame\n\
00699 # 1: global frame\n\
00700 string frame_id\n\
00701 \n\
00702 ================================================================================\n\
00703 MSG: geometry_msgs/Pose\n\
00704 # A representation of pose in free space, composed of postion and orientation. \n\
00705 Point position\n\
00706 Quaternion orientation\n\
00707 \n\
00708 ================================================================================\n\
00709 MSG: geometry_msgs/Point\n\
00710 # This contains the position of a point in free space\n\
00711 float64 x\n\
00712 float64 y\n\
00713 float64 z\n\
00714 \n\
00715 ================================================================================\n\
00716 MSG: geometry_msgs/Quaternion\n\
00717 # This represents an orientation in free space in quaternion form.\n\
00718 \n\
00719 float64 x\n\
00720 float64 y\n\
00721 float64 z\n\
00722 float64 w\n\
00723 \n\
00724 ================================================================================\n\
00725 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
00726 # Error codes for grasp and place planning\n\
00727 \n\
00728 # plan completed as expected\n\
00729 int32 SUCCESS = 0\n\
00730 \n\
00731 # tf error encountered while transforming\n\
00732 int32 TF_ERROR = 1 \n\
00733 \n\
00734 # some other error\n\
00735 int32 OTHER_ERROR = 2\n\
00736 \n\
00737 # the actual value of this error code\n\
00738 int32 value\n\
00739 ";
00740 }
00741
00742 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
00743 };
00744
00745 }
00746 }
00747
00748 namespace ros
00749 {
00750 namespace serialization
00751 {
00752
00753 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> >
00754 {
00755 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00756 {
00757 stream.next(m.arm_name);
00758 stream.next(m.target);
00759 stream.next(m.default_orientation);
00760 stream.next(m.grasp_pose);
00761 stream.next(m.collision_object_name);
00762 stream.next(m.collision_support_surface_name);
00763 }
00764
00765 ROS_DECLARE_ALLINONE_SERIALIZER;
00766 };
00767 }
00768 }
00769
00770
00771 namespace ros
00772 {
00773 namespace serialization
00774 {
00775
00776 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> >
00777 {
00778 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00779 {
00780 stream.next(m.place_locations);
00781 stream.next(m.error_code);
00782 }
00783
00784 ROS_DECLARE_ALLINONE_SERIALIZER;
00785 };
00786 }
00787 }
00788
00789 namespace ros
00790 {
00791 namespace service_traits
00792 {
00793 template<>
00794 struct MD5Sum<object_manipulation_msgs::PlacePlanning> {
00795 static const char* value()
00796 {
00797 return "db4380212f3dd309d50da154d3b8e583";
00798 }
00799
00800 static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); }
00801 };
00802
00803 template<>
00804 struct DataType<object_manipulation_msgs::PlacePlanning> {
00805 static const char* value()
00806 {
00807 return "object_manipulation_msgs/PlacePlanning";
00808 }
00809
00810 static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); }
00811 };
00812
00813 template<class ContainerAllocator>
00814 struct MD5Sum<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00815 static const char* value()
00816 {
00817 return "db4380212f3dd309d50da154d3b8e583";
00818 }
00819
00820 static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00821 };
00822
00823 template<class ContainerAllocator>
00824 struct DataType<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00825 static const char* value()
00826 {
00827 return "object_manipulation_msgs/PlacePlanning";
00828 }
00829
00830 static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00831 };
00832
00833 template<class ContainerAllocator>
00834 struct MD5Sum<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00835 static const char* value()
00836 {
00837 return "db4380212f3dd309d50da154d3b8e583";
00838 }
00839
00840 static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
00841 };
00842
00843 template<class ContainerAllocator>
00844 struct DataType<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00845 static const char* value()
00846 {
00847 return "object_manipulation_msgs/PlacePlanning";
00848 }
00849
00850 static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
00851 };
00852
00853 }
00854 }
00855
00856 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00857