Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #ifndef PCL_FEATURES_SGF7_H_
00039 #define PCL_FEATURES_SGF7_H_
00040
00041 #include <pcl17/features/feature.h>
00042
00043 namespace pcl17
00044 {
00045 const int SGF7_SIZE = 7;
00046
00047 template <typename PointInT, typename PointOutT>
00048 class SGF7Estimation : public Feature<PointInT, PointOutT>
00049 {
00050
00051 public:
00052
00053 using Feature<PointInT, PointOutT>::feature_name_;
00054 using Feature<PointInT, PointOutT>::input_;
00055 using Feature<PointInT, PointOutT>::indices_;
00056 using Feature<PointInT, PointOutT>::k_;
00057
00058 typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
00059 typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
00060
00062 SGF7Estimation ()
00063 {
00064 feature_name_ = "SGF7Estimation";
00065 k_ = 1;
00066 };
00067
00068
00070 void
00071 computeFeature (PointCloudOut &output)
00072 {
00073
00074 typename PointCloud<PointInT>::Ptr cloud (new PointCloud<PointInT> ());
00075 cloud->width = indices_->size ();
00076 cloud->height = 1;
00077 cloud->points.resize (cloud->width * cloud->height);
00078 for (size_t idx = 0; idx < indices_->size (); ++idx)
00079 {
00080 cloud->points[idx] = input_->points[(*indices_)[idx]];
00081 }
00082
00083
00084
00085 EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
00086 Eigen::Vector4f centroid3;
00087 compute3DCentroid (*cloud, centroid3);
00088 computeCovarianceMatrix (*cloud, centroid3, covariance_matrix);
00089 EIGEN_ALIGN16 Eigen::Vector3f eigen_values;
00090 EIGEN_ALIGN16 Eigen::Matrix3f eigen_vectors;
00091 pcl17::eigen33 (covariance_matrix, eigen_vectors, eigen_values);
00092 Eigen::Vector3f e1 (eigen_vectors (0, 0), eigen_vectors (1, 0), eigen_vectors (2, 0));
00093 Eigen::Vector3f e2 (eigen_vectors (0, 1), eigen_vectors (1, 1), eigen_vectors (2, 1));
00094 Eigen::Vector3f e3 (eigen_vectors (0, 2), eigen_vectors (1, 2), eigen_vectors (2, 2));
00095
00096
00097
00098 typename PointCloud<PointXYZ>::Ptr proj_cloud (new PointCloud<PointXYZ> ());
00099 proj_cloud->width = cloud->width * cloud->height;
00100 proj_cloud->height = 1;
00101 proj_cloud->points.resize (proj_cloud->width * proj_cloud->height);
00102 for (size_t idx = 0; idx < cloud->width * cloud->height; ++idx)
00103 {
00104 Eigen::Vector3f curr_point (cloud->points[idx].x, cloud->points[idx].y, cloud->points[idx].z);
00105 proj_cloud->points[idx].x = curr_point.dot (e1);
00106 proj_cloud->points[idx].y = curr_point.dot (e2);
00107 proj_cloud->points[idx].z = curr_point.dot (e3);
00108 }
00109
00110
00111
00112 float proj_cloud1[cloud->width * cloud->height];
00113 float proj_cloud2[cloud->width * cloud->height];
00114 float proj_cloud3[cloud->width * cloud->height];
00115 for (size_t idx = 0; idx < cloud->width * cloud->height; ++idx)
00116 {
00117 proj_cloud1[idx] = proj_cloud->points[idx].x;
00118 proj_cloud2[idx] = proj_cloud->points[idx].y;
00119 proj_cloud3[idx] = proj_cloud->points[idx].z;
00120 }
00121 std::sort (proj_cloud1, proj_cloud1 + cloud->width * cloud->height);
00122 std::sort (proj_cloud2, proj_cloud2 + cloud->width * cloud->height);
00123 std::sort (proj_cloud3, proj_cloud3 + cloud->width * cloud->height);
00124
00125
00126
00127 float med1 = proj_cloud1[cloud->width * cloud->height / 2];
00128 float med2 = proj_cloud2[cloud->width * cloud->height / 2];
00129 float med3 = proj_cloud3[cloud->width * cloud->height / 2];
00130
00131
00132
00133 float l1_e1 = med1 - proj_cloud1[0];
00134 float l2_e1 = proj_cloud1[cloud->width * cloud->height - 1] - med1;
00135 float l1_e2 = med2 - proj_cloud2[0];
00136 float l2_e2 = proj_cloud2[cloud->width * cloud->height - 1] - med2;
00137 float l1_e3 = med3 - proj_cloud3[0];
00138 float l2_e3 = proj_cloud3[cloud->width * cloud->height - 1] - med3;
00139
00140
00141
00142 output.points[0].histogram[0] = l1_e1 + l2_e1;
00143 output.points[0].histogram[1] = l1_e2 + l2_e2;
00144 output.points[0].histogram[2] = l1_e3 + l2_e3;
00145 output.points[0].histogram[3] = l2_e1 != 0 ? l1_e1 / l2_e1 : 0;
00146 output.points[0].histogram[4] = l2_e2 != 0 ? l1_e2 / l2_e2 : 0;
00147 output.points[0].histogram[5] = l2_e3 != 0 ? l1_e3 / l2_e3 : 0;
00148 output.points[0].histogram[6] = l1_e2 + l2_e2 != 0 ? (l1_e1 + l2_e1) / (l1_e2 + l2_e2) : 0;
00149 }
00151
00152
00153 private:
00154
00158 void
00159 computeFeatureEigen (pcl17::PointCloud<Eigen::MatrixXf> &) {}
00160 };
00161 }
00162
00163 #endif //#ifndef PCL_FEATURES_SGF7_H_