Go to the documentation of this file.00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 #ifndef PCL_FEATURES_SGF7_H_
00039 #define PCL_FEATURES_SGF7_H_
00040 
00041 #include <pcl17/features/feature.h>
00042 
00043 namespace pcl17
00044 {
00045   const int SGF7_SIZE = 7;
00046 
00047   template <typename PointInT, typename PointOutT>
00048   class SGF7Estimation : public Feature<PointInT, PointOutT>
00049   {
00050 
00051     public:
00052 
00053       using Feature<PointInT, PointOutT>::feature_name_;
00054       using Feature<PointInT, PointOutT>::input_;
00055       using Feature<PointInT, PointOutT>::indices_;
00056       using Feature<PointInT, PointOutT>::k_;
00057 
00058       typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
00059       typedef typename Feature<PointInT, PointOutT>::PointCloudIn  PointCloudIn;
00060 
00062       SGF7Estimation ()
00063       {
00064         feature_name_ = "SGF7Estimation";
00065         k_ = 1;
00066       };
00067 
00068 
00070       void
00071       computeFeature (PointCloudOut &output)
00072       {
00073         
00074         typename PointCloud<PointInT>::Ptr cloud (new PointCloud<PointInT> ());
00075         cloud->width = indices_->size ();
00076         cloud->height = 1;
00077         cloud->points.resize (cloud->width * cloud->height);
00078         for (size_t idx = 0; idx < indices_->size (); ++idx)
00079         {
00080           cloud->points[idx] = input_->points[(*indices_)[idx]];
00081         }
00082 
00083 
00084         
00085         EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
00086         Eigen::Vector4f centroid3;
00087         compute3DCentroid (*cloud, centroid3);
00088         computeCovarianceMatrix (*cloud, centroid3, covariance_matrix);
00089         EIGEN_ALIGN16 Eigen::Vector3f eigen_values;
00090         EIGEN_ALIGN16 Eigen::Matrix3f eigen_vectors;
00091         pcl17::eigen33 (covariance_matrix, eigen_vectors, eigen_values);
00092         Eigen::Vector3f e1 (eigen_vectors (0, 0), eigen_vectors (1, 0), eigen_vectors (2, 0));
00093         Eigen::Vector3f e2 (eigen_vectors (0, 1), eigen_vectors (1, 1), eigen_vectors (2, 1));
00094         Eigen::Vector3f e3 (eigen_vectors (0, 2), eigen_vectors (1, 2), eigen_vectors (2, 2));
00095 
00096 
00097         
00098         typename PointCloud<PointXYZ>::Ptr proj_cloud (new PointCloud<PointXYZ> ());
00099         proj_cloud->width = cloud->width * cloud->height;
00100         proj_cloud->height = 1;
00101         proj_cloud->points.resize (proj_cloud->width * proj_cloud->height);
00102         for (size_t idx = 0; idx < cloud->width * cloud->height; ++idx)
00103         {
00104           Eigen::Vector3f curr_point (cloud->points[idx].x, cloud->points[idx].y, cloud->points[idx].z);
00105           proj_cloud->points[idx].x = curr_point.dot (e1);
00106           proj_cloud->points[idx].y = curr_point.dot (e2);
00107           proj_cloud->points[idx].z = curr_point.dot (e3);
00108         }
00109 
00110 
00111         
00112         float proj_cloud1[cloud->width * cloud->height];
00113         float proj_cloud2[cloud->width * cloud->height];
00114         float proj_cloud3[cloud->width * cloud->height];
00115         for (size_t idx = 0; idx < cloud->width * cloud->height; ++idx)
00116         {
00117           proj_cloud1[idx] = proj_cloud->points[idx].x;
00118           proj_cloud2[idx] = proj_cloud->points[idx].y;
00119           proj_cloud3[idx] = proj_cloud->points[idx].z;
00120         }
00121         std::sort (proj_cloud1, proj_cloud1 + cloud->width * cloud->height);
00122         std::sort (proj_cloud2, proj_cloud2 + cloud->width * cloud->height);
00123         std::sort (proj_cloud3, proj_cloud3 + cloud->width * cloud->height);
00124 
00125 
00126         
00127         float med1 = proj_cloud1[cloud->width * cloud->height / 2];
00128         float med2 = proj_cloud2[cloud->width * cloud->height / 2];
00129         float med3 = proj_cloud3[cloud->width * cloud->height / 2];
00130 
00131 
00132         
00133         float l1_e1 = med1 - proj_cloud1[0];
00134         float l2_e1 = proj_cloud1[cloud->width * cloud->height - 1] - med1;
00135         float l1_e2 = med2 - proj_cloud2[0];
00136         float l2_e2 = proj_cloud2[cloud->width * cloud->height - 1] - med2;
00137         float l1_e3 = med3 - proj_cloud3[0];
00138         float l2_e3 = proj_cloud3[cloud->width * cloud->height - 1] - med3;
00139 
00140 
00141         
00142         output.points[0].histogram[0] = l1_e1 + l2_e1;
00143         output.points[0].histogram[1] = l1_e2 + l2_e2;
00144         output.points[0].histogram[2] = l1_e3 + l2_e3;
00145         output.points[0].histogram[3] = l2_e1 != 0 ? l1_e1 / l2_e1 : 0;
00146         output.points[0].histogram[4] = l2_e2 != 0 ? l1_e2 / l2_e2 : 0;
00147         output.points[0].histogram[5] = l2_e3 != 0 ? l1_e3 / l2_e3 : 0;
00148         output.points[0].histogram[6] = l1_e2 + l2_e2 != 0 ? (l1_e1 + l2_e1) / (l1_e2 + l2_e2) : 0;
00149       }
00151 
00152 
00153     private:
00154 
00158       void
00159       computeFeatureEigen (pcl17::PointCloud<Eigen::MatrixXf> &) {}
00160   };
00161 }
00162 
00163 #endif  //#ifndef PCL_FEATURES_SGF7_H_