Go to the documentation of this file.00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 #ifndef PCL_FEATURES_SGF5_H_
00039 #define PCL_FEATURES_SGF5_H_
00040 
00041 #include <pcl17/features/feature.h>
00042 
00043 namespace pcl17
00044 {
00045   const int SGF5_SIZE = 3;
00046 
00047   template <typename PointInT, typename PointOutT>
00048   class SGF5Estimation : public Feature<PointInT, PointOutT>
00049   {
00050 
00051     public:
00052 
00053       using Feature<PointInT, PointOutT>::feature_name_;
00054       using Feature<PointInT, PointOutT>::input_;
00055       using Feature<PointInT, PointOutT>::indices_;
00056       using Feature<PointInT, PointOutT>::k_;
00057 
00058       typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
00059       typedef typename Feature<PointInT, PointOutT>::PointCloudIn  PointCloudIn;
00060 
00062       SGF5Estimation ()
00063       {
00064         feature_name_ = "SGF5Estimation";
00065         k_ = 1;
00066       };
00067 
00068 
00070       void
00071       computeFeature (PointCloudOut &output)
00072       {
00073         
00074         typename PointCloud<PointInT>::Ptr cloud (new PointCloud<PointInT> ());
00075         cloud->width = indices_->size ();
00076         cloud->height = 1;
00077         cloud->points.resize (cloud->width * cloud->height);
00078         for (size_t idx = 0; idx < indices_->size (); ++idx)
00079         {
00080           cloud->points[idx] = input_->points[(*indices_)[idx]];
00081         }
00082 
00083 
00084         
00085         EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
00086         Eigen::Vector4f centroid3;
00087         compute3DCentroid (*cloud, centroid3);
00088         computeCovarianceMatrix (*cloud, centroid3, covariance_matrix);
00089         EIGEN_ALIGN16 Eigen::Vector3f eigen_values;
00090         EIGEN_ALIGN16 Eigen::Matrix3f eigen_vectors;
00091         pcl17::eigen33 (covariance_matrix, eigen_vectors, eigen_values);
00092         Eigen::Vector3f e1 (eigen_vectors (0, 0), eigen_vectors (1, 0), eigen_vectors (2, 0));
00093         Eigen::Vector3f e2 (eigen_vectors (0, 1), eigen_vectors (1, 1), eigen_vectors (2, 1));
00094         Eigen::Vector3f e3 (eigen_vectors (0, 2), eigen_vectors (1, 2), eigen_vectors (2, 2));
00095 
00096 
00097         
00098         typename PointCloud<PointXYZ>::Ptr proj_cloud (new PointCloud<PointXYZ> ());
00099         proj_cloud->width = cloud->width * cloud->height;
00100         proj_cloud->height = 1;
00101         proj_cloud->points.resize (proj_cloud->width * proj_cloud->height);
00102         for (size_t idx = 0; idx < cloud->width * cloud->height; ++idx)
00103         {
00104           Eigen::Vector3f curr_point (cloud->points[idx].x, cloud->points[idx].y, cloud->points[idx].z);
00105           proj_cloud->points[idx].x = curr_point.dot (e1);
00106           proj_cloud->points[idx].y = curr_point.dot (e2);
00107           proj_cloud->points[idx].z = curr_point.dot (e3);
00108         }
00109 
00110 
00111         
00112         EIGEN_ALIGN16 Eigen::Matrix3f proj_cov;
00113         Eigen::Vector4f proj_cent;
00114         compute3DCentroid (*proj_cloud, proj_cent);
00115         computeCovarianceMatrix (*cloud, proj_cent, proj_cov);
00116 
00117 
00118         
00119         output.points[0].histogram[0] = proj_cov (0, 0);
00120         output.points[0].histogram[1] = proj_cov (1, 1);
00121         output.points[0].histogram[2] = proj_cov (2, 2);
00122       }
00124 
00125 
00126     private:
00127 
00131       void
00132       computeFeatureEigen (pcl17::PointCloud<Eigen::MatrixXf> &) {}
00133   };
00134 }
00135 
00136 #endif  //#ifndef PCL_FEATURES_SGF5_H_