00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026 #include "main.h"
00027 #include <Eigen/Geometry>
00028 #include <Eigen/LU>
00029 #include <Eigen/QR>
00030
00031 template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
00032 {
00033
00034
00035
00036 typedef typename HyperplaneType::Index Index;
00037 const Index dim = _plane.dim();
00038 enum { Options = HyperplaneType::Options };
00039 typedef typename HyperplaneType::Scalar Scalar;
00040 typedef typename NumTraits<Scalar>::Real RealScalar;
00041 typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
00042 typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
00043 HyperplaneType::AmbientDimAtCompileTime> MatrixType;
00044
00045 VectorType p0 = VectorType::Random(dim);
00046 VectorType p1 = VectorType::Random(dim);
00047
00048 VectorType n0 = VectorType::Random(dim).normalized();
00049 VectorType n1 = VectorType::Random(dim).normalized();
00050
00051 HyperplaneType pl0(n0, p0);
00052 HyperplaneType pl1(n1, p1);
00053 HyperplaneType pl2 = pl1;
00054
00055 Scalar s0 = internal::random<Scalar>();
00056 Scalar s1 = internal::random<Scalar>();
00057
00058 VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
00059
00060 VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
00061 VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 );
00062 VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
00063 VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) );
00064
00065
00066 if (!NumTraits<Scalar>::IsComplex)
00067 {
00068 MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
00069 DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
00070 Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
00071
00072 pl2 = pl1;
00073 VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
00074 pl2 = pl1;
00075 VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
00076 pl2 = pl1;
00077 VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
00078 pl2 = pl1;
00079 VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
00080 .absDistance((rot*scaling*translation) * p1), Scalar(1) );
00081 pl2 = pl1;
00082 VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
00083 .absDistance((rot*translation) * p1), Scalar(1) );
00084 }
00085
00086
00087 const int Dim = HyperplaneType::AmbientDimAtCompileTime;
00088 typedef typename GetDifferentType<Scalar>::type OtherScalar;
00089 Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
00090 VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
00091 Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
00092 VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
00093 }
00094
00095 template<typename Scalar> void lines()
00096 {
00097 typedef Hyperplane<Scalar, 2> HLine;
00098 typedef ParametrizedLine<Scalar, 2> PLine;
00099 typedef Matrix<Scalar,2,1> Vector;
00100 typedef Matrix<Scalar,3,1> CoeffsType;
00101
00102 for(int i = 0; i < 10; i++)
00103 {
00104 Vector center = Vector::Random();
00105 Vector u = Vector::Random();
00106 Vector v = Vector::Random();
00107 Scalar a = internal::random<Scalar>();
00108 while (internal::abs(a-1) < 1e-4) a = internal::random<Scalar>();
00109 while (u.norm() < 1e-4) u = Vector::Random();
00110 while (v.norm() < 1e-4) v = Vector::Random();
00111
00112 HLine line_u = HLine::Through(center + u, center + a*u);
00113 HLine line_v = HLine::Through(center + v, center + a*v);
00114
00115
00116 VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
00117 VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
00118
00119 Vector result = line_u.intersection(line_v);
00120
00121
00122 VERIFY_IS_APPROX(result, center);
00123
00124
00125 PLine pl(line_u);
00126 CoeffsType converted_coeffs = HLine(pl).coeffs();
00127 converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]);
00128 VERIFY(line_u.coeffs().isApprox(converted_coeffs));
00129 }
00130 }
00131
00132 template<typename Scalar> void hyperplane_alignment()
00133 {
00134 typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
00135 typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
00136
00137 EIGEN_ALIGN16 Scalar array1[4];
00138 EIGEN_ALIGN16 Scalar array2[4];
00139 EIGEN_ALIGN16 Scalar array3[4+1];
00140 Scalar* array3u = array3+1;
00141
00142 Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
00143 Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
00144 Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
00145
00146 p1->coeffs().setRandom();
00147 *p2 = *p1;
00148 *p3 = *p1;
00149
00150 VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
00151 VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
00152
00153 #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
00154 if(internal::packet_traits<Scalar>::Vectorizable)
00155 VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
00156 #endif
00157 }
00158
00159
00160 void test_geo_hyperplane()
00161 {
00162 for(int i = 0; i < g_repeat; i++) {
00163 CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
00164 CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
00165 CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
00166 CALL_SUBTEST_2( hyperplane_alignment<float>() );
00167 CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
00168 CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
00169 CALL_SUBTEST_1( lines<float>() );
00170 CALL_SUBTEST_3( lines<double>() );
00171 }
00172 }