00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026 #define EIGEN2_SUPPORT
00027 #define EIGEN_NO_STATIC_ASSERT
00028 #include "main.h"
00029 #include <functional>
00030
00031 using namespace std;
00032
00033 template<typename Scalar> struct AddIfNull {
00034 const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
00035 enum { Cost = NumTraits<Scalar>::AddCost };
00036 };
00037
00038 template<typename MatrixType> void cwiseops(const MatrixType& m)
00039 {
00040 typedef typename MatrixType::Index Index;
00041 typedef typename MatrixType::Scalar Scalar;
00042 typedef typename NumTraits<Scalar>::Real RealScalar;
00043 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
00044
00045 Index rows = m.rows();
00046 Index cols = m.cols();
00047
00048 MatrixType m1 = MatrixType::Random(rows, cols),
00049 m2 = MatrixType::Random(rows, cols),
00050 m3(rows, cols),
00051 m4(rows, cols),
00052 mzero = MatrixType::Zero(rows, cols),
00053 mones = MatrixType::Ones(rows, cols),
00054 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
00055 ::Identity(rows, rows),
00056 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
00057 VectorType v1 = VectorType::Random(rows),
00058 v2 = VectorType::Random(rows),
00059 vzero = VectorType::Zero(rows),
00060 vones = VectorType::Ones(rows),
00061 v3(rows);
00062
00063 Index r = internal::random<Index>(0, rows-1),
00064 c = internal::random<Index>(0, cols-1);
00065
00066 Scalar s1 = internal::random<Scalar>();
00067
00068
00069 m3 = MatrixType::Constant(rows, cols, s1);
00070 for (int j=0; j<cols; ++j)
00071 for (int i=0; i<rows; ++i)
00072 {
00073 VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
00074 VERIFY_IS_APPROX(mones(i,j), Scalar(1));
00075 VERIFY_IS_APPROX(m3(i,j), s1);
00076 }
00077 VERIFY(mzero.isZero());
00078 VERIFY(mones.isOnes());
00079 VERIFY(m3.isConstant(s1));
00080 VERIFY(identity.isIdentity());
00081 VERIFY_IS_APPROX(m4.setConstant(s1), m3);
00082 VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
00083 VERIFY_IS_APPROX(m4.setZero(), mzero);
00084 VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
00085 VERIFY_IS_APPROX(m4.setOnes(), mones);
00086 VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
00087 m4.fill(s1);
00088 VERIFY_IS_APPROX(m4, m3);
00089
00090 VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
00091 VERIFY_IS_APPROX(v3.setZero(rows), vzero);
00092 VERIFY_IS_APPROX(v3.setOnes(rows), vones);
00093
00094 m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
00095
00096 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
00097 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
00098 VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
00099
00100 VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
00101 VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
00102 m3 = m1; m3.cwise() += 1;
00103 VERIFY_IS_APPROX(m1 + mones, m3);
00104 m3 = m1; m3.cwise() -= 1;
00105 VERIFY_IS_APPROX(m1 - mones, m3);
00106
00107 VERIFY_IS_APPROX(m2, m2.cwise() * mones);
00108 VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1);
00109 m3 = m1;
00110 m3.cwise() *= m2;
00111 VERIFY_IS_APPROX(m3, m1.cwise() * m2);
00112
00113 VERIFY_IS_APPROX(mones, m2.cwise()/m2);
00114 if(!NumTraits<Scalar>::IsInteger)
00115 {
00116 VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse()));
00117 m3 = m1.cwise().abs().cwise().sqrt();
00118 VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
00119 VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
00120 VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
00121
00122 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
00123 m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
00124 VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
00125 m3 = m1.cwise().abs();
00126 VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
00127
00128
00129 VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
00130 m3 = m1;
00131 m3.cwise() /= m2;
00132 VERIFY_IS_APPROX(m3, m1.cwise() / m2);
00133 }
00134
00135
00136 VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
00137 VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
00138 VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
00139
00140
00141 VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
00142 VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
00143 VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
00144
00145 VERIFY( (m1.cwise() == m1).all() );
00146 VERIFY( (m1.cwise() != m2).any() );
00147 VERIFY(!(m1.cwise() == (m1+mones)).any() );
00148 if (rows*cols>1)
00149 {
00150 m3 = m1;
00151 m3(r,c) += 1;
00152 VERIFY( (m1.cwise() == m3).any() );
00153 VERIFY( !(m1.cwise() == m3).all() );
00154 }
00155 VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
00156 VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
00157 VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
00158 VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
00159
00160 VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
00161 VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
00162 VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
00163 }
00164
00165 void test_cwiseop()
00166 {
00167 for(int i = 0; i < g_repeat ; i++) {
00168 CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
00169 CALL_SUBTEST_2( cwiseops(Matrix4d()) );
00170 CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
00171 CALL_SUBTEST_4( cwiseops(MatrixXf(22, 22)) );
00172 CALL_SUBTEST_5( cwiseops(MatrixXi(8, 12)) );
00173 CALL_SUBTEST_6( cwiseops(MatrixXd(20, 20)) );
00174 }
00175 }