00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_JACOBISVD_H
00026 #define EIGEN_JACOBISVD_H
00027
00028 namespace internal {
00029
00030
00031 template<typename MatrixType, int QRPreconditioner,
00032 bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
00033 struct svd_precondition_2x2_block_to_be_real {};
00034
00035
00036
00037
00038
00039
00040
00041
00042 enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
00043
00044 template<typename MatrixType, int QRPreconditioner, int Case>
00045 struct qr_preconditioner_should_do_anything
00046 {
00047 enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
00048 MatrixType::ColsAtCompileTime != Dynamic &&
00049 MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
00050 b = MatrixType::RowsAtCompileTime != Dynamic &&
00051 MatrixType::ColsAtCompileTime != Dynamic &&
00052 MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
00053 ret = !( (QRPreconditioner == NoQRPreconditioner) ||
00054 (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
00055 (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
00056 };
00057 };
00058
00059 template<typename MatrixType, int QRPreconditioner, int Case,
00060 bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
00061 > struct qr_preconditioner_impl {};
00062
00063 template<typename MatrixType, int QRPreconditioner, int Case>
00064 struct qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
00065 {
00066 static bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
00067 {
00068 return false;
00069 }
00070 };
00071
00072
00073
00074 template<typename MatrixType>
00075 struct qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
00076 {
00077 static bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00078 {
00079 if(matrix.rows() > matrix.cols())
00080 {
00081 FullPivHouseholderQR<MatrixType> qr(matrix);
00082 svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
00083 if(svd.m_computeFullU) svd.m_matrixU = qr.matrixQ();
00084 if(svd.computeV()) svd.m_matrixV = qr.colsPermutation();
00085 return true;
00086 }
00087 return false;
00088 }
00089 };
00090
00091 template<typename MatrixType>
00092 struct qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
00093 {
00094 static bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00095 {
00096 if(matrix.cols() > matrix.rows())
00097 {
00098 typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
00099 MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
00100 TransposeTypeWithSameStorageOrder;
00101 FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
00102 svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
00103 if(svd.m_computeFullV) svd.m_matrixV = qr.matrixQ();
00104 if(svd.computeU()) svd.m_matrixU = qr.colsPermutation();
00105 return true;
00106 }
00107 else return false;
00108 }
00109 };
00110
00111
00112
00113 template<typename MatrixType>
00114 struct qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
00115 {
00116 static bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00117 {
00118 if(matrix.rows() > matrix.cols())
00119 {
00120 ColPivHouseholderQR<MatrixType> qr(matrix);
00121 svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
00122 if(svd.m_computeFullU) svd.m_matrixU = qr.householderQ();
00123 else if(svd.m_computeThinU) {
00124 svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
00125 qr.householderQ().applyThisOnTheLeft(svd.m_matrixU);
00126 }
00127 if(svd.computeV()) svd.m_matrixV = qr.colsPermutation();
00128 return true;
00129 }
00130 return false;
00131 }
00132 };
00133
00134 template<typename MatrixType>
00135 struct qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
00136 {
00137 static bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00138 {
00139 if(matrix.cols() > matrix.rows())
00140 {
00141 typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
00142 MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
00143 TransposeTypeWithSameStorageOrder;
00144 ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
00145 svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
00146 if(svd.m_computeFullV) svd.m_matrixV = qr.householderQ();
00147 else if(svd.m_computeThinV) {
00148 svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
00149 qr.householderQ().applyThisOnTheLeft(svd.m_matrixV);
00150 }
00151 if(svd.computeU()) svd.m_matrixU = qr.colsPermutation();
00152 return true;
00153 }
00154 else return false;
00155 }
00156 };
00157
00158
00159
00160 template<typename MatrixType>
00161 struct qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
00162 {
00163 static bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00164 {
00165 if(matrix.rows() > matrix.cols())
00166 {
00167 HouseholderQR<MatrixType> qr(matrix);
00168 svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
00169 if(svd.m_computeFullU) svd.m_matrixU = qr.householderQ();
00170 else if(svd.m_computeThinU) {
00171 svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
00172 qr.householderQ().applyThisOnTheLeft(svd.m_matrixU);
00173 }
00174 if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
00175 return true;
00176 }
00177 return false;
00178 }
00179 };
00180
00181 template<typename MatrixType>
00182 struct qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
00183 {
00184 static bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00185 {
00186 if(matrix.cols() > matrix.rows())
00187 {
00188 typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
00189 MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
00190 TransposeTypeWithSameStorageOrder;
00191 HouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
00192 svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
00193 if(svd.m_computeFullV) svd.m_matrixV = qr.householderQ();
00194 else if(svd.m_computeThinV) {
00195 svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
00196 qr.householderQ().applyThisOnTheLeft(svd.m_matrixV);
00197 }
00198 if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
00199 return true;
00200 }
00201 else return false;
00202 }
00203 };
00204
00205
00206
00207
00208
00209
00210 template<typename MatrixType, int QRPreconditioner>
00211 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
00212 {
00213 typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
00214 typedef typename SVD::Index Index;
00215 static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
00216 };
00217
00218 template<typename MatrixType, int QRPreconditioner>
00219 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
00220 {
00221 typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
00222 typedef typename MatrixType::Scalar Scalar;
00223 typedef typename MatrixType::RealScalar RealScalar;
00224 typedef typename SVD::Index Index;
00225 static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
00226 {
00227 Scalar z;
00228 JacobiRotation<Scalar> rot;
00229 RealScalar n = sqrt(abs2(work_matrix.coeff(p,p)) + abs2(work_matrix.coeff(q,p)));
00230 if(n==0)
00231 {
00232 z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
00233 work_matrix.row(p) *= z;
00234 if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
00235 z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
00236 work_matrix.row(q) *= z;
00237 if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
00238 }
00239 else
00240 {
00241 rot.c() = conj(work_matrix.coeff(p,p)) / n;
00242 rot.s() = work_matrix.coeff(q,p) / n;
00243 work_matrix.applyOnTheLeft(p,q,rot);
00244 if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
00245 if(work_matrix.coeff(p,q) != Scalar(0))
00246 {
00247 Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
00248 work_matrix.col(q) *= z;
00249 if(svd.computeV()) svd.m_matrixV.col(q) *= z;
00250 }
00251 if(work_matrix.coeff(q,q) != Scalar(0))
00252 {
00253 z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
00254 work_matrix.row(q) *= z;
00255 if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
00256 }
00257 }
00258 }
00259 };
00260
00261 template<typename MatrixType, typename RealScalar, typename Index>
00262 void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
00263 JacobiRotation<RealScalar> *j_left,
00264 JacobiRotation<RealScalar> *j_right)
00265 {
00266 Matrix<RealScalar,2,2> m;
00267 m << real(matrix.coeff(p,p)), real(matrix.coeff(p,q)),
00268 real(matrix.coeff(q,p)), real(matrix.coeff(q,q));
00269 JacobiRotation<RealScalar> rot1;
00270 RealScalar t = m.coeff(0,0) + m.coeff(1,1);
00271 RealScalar d = m.coeff(1,0) - m.coeff(0,1);
00272 if(t == RealScalar(0))
00273 {
00274 rot1.c() = RealScalar(0);
00275 rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
00276 }
00277 else
00278 {
00279 RealScalar u = d / t;
00280 rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + abs2(u));
00281 rot1.s() = rot1.c() * u;
00282 }
00283 m.applyOnTheLeft(0,1,rot1);
00284 j_right->makeJacobi(m,0,1);
00285 *j_left = rot1 * j_right->transpose();
00286 }
00287
00288 }
00289
00343 template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
00344 {
00345 public:
00346
00347 typedef _MatrixType MatrixType;
00348 typedef typename MatrixType::Scalar Scalar;
00349 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00350 typedef typename MatrixType::Index Index;
00351 enum {
00352 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00353 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00354 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
00355 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00356 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
00357 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
00358 MatrixOptions = MatrixType::Options
00359 };
00360
00361 typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
00362 MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
00363 MatrixUType;
00364 typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
00365 MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
00366 MatrixVType;
00367 typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
00368 typedef typename internal::plain_row_type<MatrixType>::type RowType;
00369 typedef typename internal::plain_col_type<MatrixType>::type ColType;
00370 typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
00371 MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
00372 WorkMatrixType;
00373
00379 JacobiSVD()
00380 : m_isInitialized(false),
00381 m_isAllocated(false),
00382 m_computationOptions(0),
00383 m_rows(-1), m_cols(-1)
00384 {}
00385
00386
00393 JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
00394 : m_isInitialized(false),
00395 m_isAllocated(false),
00396 m_computationOptions(0),
00397 m_rows(-1), m_cols(-1)
00398 {
00399 allocate(rows, cols, computationOptions);
00400 }
00401
00412 JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
00413 : m_isInitialized(false),
00414 m_isAllocated(false),
00415 m_computationOptions(0),
00416 m_rows(-1), m_cols(-1)
00417 {
00418 compute(matrix, computationOptions);
00419 }
00420
00431 JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
00432
00439 JacobiSVD& compute(const MatrixType& matrix)
00440 {
00441 return compute(matrix, m_computationOptions);
00442 }
00443
00453 const MatrixUType& matrixU() const
00454 {
00455 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00456 eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
00457 return m_matrixU;
00458 }
00459
00469 const MatrixVType& matrixV() const
00470 {
00471 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00472 eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
00473 return m_matrixV;
00474 }
00475
00481 const SingularValuesType& singularValues() const
00482 {
00483 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00484 return m_singularValues;
00485 }
00486
00488 inline bool computeU() const { return m_computeFullU || m_computeThinU; }
00490 inline bool computeV() const { return m_computeFullV || m_computeThinV; }
00491
00501 template<typename Rhs>
00502 inline const internal::solve_retval<JacobiSVD, Rhs>
00503 solve(const MatrixBase<Rhs>& b) const
00504 {
00505 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00506 eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
00507 return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
00508 }
00509
00511 Index nonzeroSingularValues() const
00512 {
00513 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00514 return m_nonzeroSingularValues;
00515 }
00516
00517 inline Index rows() const { return m_rows; }
00518 inline Index cols() const { return m_cols; }
00519
00520 private:
00521 void allocate(Index rows, Index cols, unsigned int computationOptions);
00522
00523 protected:
00524 MatrixUType m_matrixU;
00525 MatrixVType m_matrixV;
00526 SingularValuesType m_singularValues;
00527 WorkMatrixType m_workMatrix;
00528 bool m_isInitialized, m_isAllocated;
00529 bool m_computeFullU, m_computeThinU;
00530 bool m_computeFullV, m_computeThinV;
00531 unsigned int m_computationOptions;
00532 Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
00533
00534 template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
00535 friend struct internal::svd_precondition_2x2_block_to_be_real;
00536 template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
00537 friend struct internal::qr_preconditioner_impl;
00538 };
00539
00540 template<typename MatrixType, int QRPreconditioner>
00541 void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
00542 {
00543 eigen_assert(rows >= 0 && cols >= 0);
00544
00545 if (m_isAllocated &&
00546 rows == m_rows &&
00547 cols == m_cols &&
00548 computationOptions == m_computationOptions)
00549 {
00550 return;
00551 }
00552
00553 m_rows = rows;
00554 m_cols = cols;
00555 m_isInitialized = false;
00556 m_isAllocated = true;
00557 m_computationOptions = computationOptions;
00558 m_computeFullU = (computationOptions & ComputeFullU) != 0;
00559 m_computeThinU = (computationOptions & ComputeThinU) != 0;
00560 m_computeFullV = (computationOptions & ComputeFullV) != 0;
00561 m_computeThinV = (computationOptions & ComputeThinV) != 0;
00562 eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
00563 eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
00564 eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
00565 "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
00566 if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
00567 {
00568 eigen_assert(!(m_computeThinU || m_computeThinV) &&
00569 "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
00570 "Use the ColPivHouseholderQR preconditioner instead.");
00571 }
00572 m_diagSize = std::min(m_rows, m_cols);
00573 m_singularValues.resize(m_diagSize);
00574 m_matrixU.resize(m_rows, m_computeFullU ? m_rows
00575 : m_computeThinU ? m_diagSize
00576 : 0);
00577 m_matrixV.resize(m_cols, m_computeFullV ? m_cols
00578 : m_computeThinV ? m_diagSize
00579 : 0);
00580 m_workMatrix.resize(m_diagSize, m_diagSize);
00581 }
00582
00583 template<typename MatrixType, int QRPreconditioner>
00584 JacobiSVD<MatrixType, QRPreconditioner>&
00585 JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
00586 {
00587 allocate(matrix.rows(), matrix.cols(), computationOptions);
00588
00589
00590
00591 const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
00592
00593
00594
00595 if(!internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows>::run(*this, matrix)
00596 && !internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols>::run(*this, matrix))
00597 {
00598 m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize);
00599 if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
00600 if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
00601 if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
00602 if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
00603 }
00604
00605
00606
00607 bool finished = false;
00608 while(!finished)
00609 {
00610 finished = true;
00611
00612
00613
00614 for(Index p = 1; p < m_diagSize; ++p)
00615 {
00616 for(Index q = 0; q < p; ++q)
00617 {
00618
00619
00620
00621 using std::max;
00622 if(max(internal::abs(m_workMatrix.coeff(p,q)),internal::abs(m_workMatrix.coeff(q,p)))
00623 > max(internal::abs(m_workMatrix.coeff(p,p)),internal::abs(m_workMatrix.coeff(q,q)))*precision)
00624 {
00625 finished = false;
00626
00627
00628 internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
00629 JacobiRotation<RealScalar> j_left, j_right;
00630 internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
00631
00632
00633 m_workMatrix.applyOnTheLeft(p,q,j_left);
00634 if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
00635
00636 m_workMatrix.applyOnTheRight(p,q,j_right);
00637 if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
00638 }
00639 }
00640 }
00641 }
00642
00643
00644
00645 for(Index i = 0; i < m_diagSize; ++i)
00646 {
00647 RealScalar a = internal::abs(m_workMatrix.coeff(i,i));
00648 m_singularValues.coeffRef(i) = a;
00649 if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
00650 }
00651
00652
00653
00654 m_nonzeroSingularValues = m_diagSize;
00655 for(Index i = 0; i < m_diagSize; i++)
00656 {
00657 Index pos;
00658 RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
00659 if(maxRemainingSingularValue == RealScalar(0))
00660 {
00661 m_nonzeroSingularValues = i;
00662 break;
00663 }
00664 if(pos)
00665 {
00666 pos += i;
00667 std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
00668 if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
00669 if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
00670 }
00671 }
00672
00673 m_isInitialized = true;
00674 return *this;
00675 }
00676
00677 namespace internal {
00678 template<typename _MatrixType, int QRPreconditioner, typename Rhs>
00679 struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
00680 : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
00681 {
00682 typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
00683 EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
00684
00685 template<typename Dest> void evalTo(Dest& dst) const
00686 {
00687 eigen_assert(rhs().rows() == dec().rows());
00688
00689
00690
00691
00692 Index diagSize = std::min(dec().rows(), dec().cols());
00693 typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
00694
00695 Index nonzeroSingVals = dec().nonzeroSingularValues();
00696 invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
00697 invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
00698
00699 dst = dec().matrixV().leftCols(diagSize)
00700 * invertedSingVals.asDiagonal()
00701 * dec().matrixU().leftCols(diagSize).adjoint()
00702 * rhs();
00703 }
00704 };
00705 }
00706
00707 template<typename Derived>
00708 JacobiSVD<typename MatrixBase<Derived>::PlainObject>
00709 MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
00710 {
00711 return JacobiSVD<PlainObject>(*this, computationOptions);
00712 }
00713
00714
00715
00716 #endif // EIGEN_JACOBISVD_H