GraspableObjectList.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-pr2_object_manipulation/doc_stacks/2014-01-03_11-39-44.427894/pr2_object_manipulation/applications/pr2_interactive_object_detection/msg/GraspableObjectList.msg */
00002 #ifndef PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H
00003 #define PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "sensor_msgs/Image.h"
00019 #include "sensor_msgs/CameraInfo.h"
00020 #include "arm_navigation_msgs/Shape.h"
00021 #include "geometry_msgs/Pose.h"
00022 
00023 namespace pr2_interactive_object_detection
00024 {
00025 template <class ContainerAllocator>
00026 struct GraspableObjectList_ {
00027   typedef GraspableObjectList_<ContainerAllocator> Type;
00028 
00029   GraspableObjectList_()
00030   : graspable_objects()
00031   , image()
00032   , camera_info()
00033   , meshes()
00034   , reference_to_camera()
00035   {
00036   }
00037 
00038   GraspableObjectList_(const ContainerAllocator& _alloc)
00039   : graspable_objects(_alloc)
00040   , image(_alloc)
00041   , camera_info(_alloc)
00042   , meshes(_alloc)
00043   , reference_to_camera(_alloc)
00044   {
00045   }
00046 
00047   typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other >  _graspable_objects_type;
00048   std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other >  graspable_objects;
00049 
00050   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _image_type;
00051    ::sensor_msgs::Image_<ContainerAllocator>  image;
00052 
00053   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _camera_info_type;
00054    ::sensor_msgs::CameraInfo_<ContainerAllocator>  camera_info;
00055 
00056   typedef std::vector< ::arm_navigation_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::other >  _meshes_type;
00057   std::vector< ::arm_navigation_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::other >  meshes;
00058 
00059   typedef  ::geometry_msgs::Pose_<ContainerAllocator>  _reference_to_camera_type;
00060    ::geometry_msgs::Pose_<ContainerAllocator>  reference_to_camera;
00061 
00062 
00063   typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > Ptr;
00064   typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator>  const> ConstPtr;
00065   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00066 }; // struct GraspableObjectList
00067 typedef  ::pr2_interactive_object_detection::GraspableObjectList_<std::allocator<void> > GraspableObjectList;
00068 
00069 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList> GraspableObjectListPtr;
00070 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList const> GraspableObjectListConstPtr;
00071 
00072 
00073 template<typename ContainerAllocator>
00074 std::ostream& operator<<(std::ostream& s, const  ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> & v)
00075 {
00076   ros::message_operations::Printer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >::stream(s, "", v);
00077   return s;}
00078 
00079 } // namespace pr2_interactive_object_detection
00080 
00081 namespace ros
00082 {
00083 namespace message_traits
00084 {
00085 template<class ContainerAllocator> struct IsMessage< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > : public TrueType {};
00086 template<class ContainerAllocator> struct IsMessage< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator>  const> : public TrueType {};
00087 template<class ContainerAllocator>
00088 struct MD5Sum< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "3504435d89178a4a3df53086cd29599c";
00092   }
00093 
00094   static const char* value(const  ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); } 
00095   static const uint64_t static_value1 = 0x3504435d89178a4aULL;
00096   static const uint64_t static_value2 = 0x3df53086cd29599cULL;
00097 };
00098 
00099 template<class ContainerAllocator>
00100 struct DataType< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > {
00101   static const char* value() 
00102   {
00103     return "pr2_interactive_object_detection/GraspableObjectList";
00104   }
00105 
00106   static const char* value(const  ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); } 
00107 };
00108 
00109 template<class ContainerAllocator>
00110 struct Definition< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > {
00111   static const char* value() 
00112   {
00113     return "object_manipulation_msgs/GraspableObject[] graspable_objects\n\
00114 \n\
00115 #Information required for visualization\n\
00116 \n\
00117 sensor_msgs/Image image\n\
00118 sensor_msgs/CameraInfo camera_info\n\
00119 \n\
00120 #Holds a single mesh for each recognized graspable object, an empty mesh otherwise\n\
00121 arm_navigation_msgs/Shape[] meshes\n\
00122 \n\
00123 #pose to transform the frame of the clusters/object poses into camera coordinates\n\
00124 geometry_msgs/Pose reference_to_camera\n\
00125 \n\
00126 ================================================================================\n\
00127 MSG: object_manipulation_msgs/GraspableObject\n\
00128 # an object that the object_manipulator can work on\n\
00129 \n\
00130 # a graspable object can be represented in multiple ways. This message\n\
00131 # can contain all of them. Which one is actually used is up to the receiver\n\
00132 # of this message. When adding new representations, one must be careful that\n\
00133 # they have reasonable lightweight defaults indicating that that particular\n\
00134 # representation is not available.\n\
00135 \n\
00136 # the tf frame to be used as a reference frame when combining information from\n\
00137 # the different representations below\n\
00138 string reference_frame_id\n\
00139 \n\
00140 # potential recognition results from a database of models\n\
00141 # all poses are relative to the object reference pose\n\
00142 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00143 \n\
00144 # the point cloud itself\n\
00145 sensor_msgs/PointCloud cluster\n\
00146 \n\
00147 # a region of a PointCloud2 of interest\n\
00148 object_manipulation_msgs/SceneRegion region\n\
00149 \n\
00150 # the name that this object has in the collision environment\n\
00151 string collision_name\n\
00152 ================================================================================\n\
00153 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00154 # Informs that a specific model from the Model Database has been \n\
00155 # identified at a certain location\n\
00156 \n\
00157 # the database id of the model\n\
00158 int32 model_id\n\
00159 \n\
00160 # the pose that it can be found in\n\
00161 geometry_msgs/PoseStamped pose\n\
00162 \n\
00163 # a measure of the confidence level in this detection result\n\
00164 float32 confidence\n\
00165 \n\
00166 # the name of the object detector that generated this detection result\n\
00167 string detector_name\n\
00168 \n\
00169 ================================================================================\n\
00170 MSG: geometry_msgs/PoseStamped\n\
00171 # A Pose with reference coordinate frame and timestamp\n\
00172 Header header\n\
00173 Pose pose\n\
00174 \n\
00175 ================================================================================\n\
00176 MSG: std_msgs/Header\n\
00177 # Standard metadata for higher-level stamped data types.\n\
00178 # This is generally used to communicate timestamped data \n\
00179 # in a particular coordinate frame.\n\
00180 # \n\
00181 # sequence ID: consecutively increasing ID \n\
00182 uint32 seq\n\
00183 #Two-integer timestamp that is expressed as:\n\
00184 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00185 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00186 # time-handling sugar is provided by the client library\n\
00187 time stamp\n\
00188 #Frame this data is associated with\n\
00189 # 0: no frame\n\
00190 # 1: global frame\n\
00191 string frame_id\n\
00192 \n\
00193 ================================================================================\n\
00194 MSG: geometry_msgs/Pose\n\
00195 # A representation of pose in free space, composed of postion and orientation. \n\
00196 Point position\n\
00197 Quaternion orientation\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: geometry_msgs/Point\n\
00201 # This contains the position of a point in free space\n\
00202 float64 x\n\
00203 float64 y\n\
00204 float64 z\n\
00205 \n\
00206 ================================================================================\n\
00207 MSG: geometry_msgs/Quaternion\n\
00208 # This represents an orientation in free space in quaternion form.\n\
00209 \n\
00210 float64 x\n\
00211 float64 y\n\
00212 float64 z\n\
00213 float64 w\n\
00214 \n\
00215 ================================================================================\n\
00216 MSG: sensor_msgs/PointCloud\n\
00217 # This message holds a collection of 3d points, plus optional additional\n\
00218 # information about each point.\n\
00219 \n\
00220 # Time of sensor data acquisition, coordinate frame ID.\n\
00221 Header header\n\
00222 \n\
00223 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00224 # in the frame given in the header.\n\
00225 geometry_msgs/Point32[] points\n\
00226 \n\
00227 # Each channel should have the same number of elements as points array,\n\
00228 # and the data in each channel should correspond 1:1 with each point.\n\
00229 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00230 ChannelFloat32[] channels\n\
00231 \n\
00232 ================================================================================\n\
00233 MSG: geometry_msgs/Point32\n\
00234 # This contains the position of a point in free space(with 32 bits of precision).\n\
00235 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00236 # \n\
00237 # This recommendation is to promote interoperability.  \n\
00238 #\n\
00239 # This message is designed to take up less space when sending\n\
00240 # lots of points at once, as in the case of a PointCloud.  \n\
00241 \n\
00242 float32 x\n\
00243 float32 y\n\
00244 float32 z\n\
00245 ================================================================================\n\
00246 MSG: sensor_msgs/ChannelFloat32\n\
00247 # This message is used by the PointCloud message to hold optional data\n\
00248 # associated with each point in the cloud. The length of the values\n\
00249 # array should be the same as the length of the points array in the\n\
00250 # PointCloud, and each value should be associated with the corresponding\n\
00251 # point.\n\
00252 \n\
00253 # Channel names in existing practice include:\n\
00254 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00255 #              This is opposite to usual conventions but remains for\n\
00256 #              historical reasons. The newer PointCloud2 message has no\n\
00257 #              such problem.\n\
00258 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00259 #           (R,G,B) values packed into the least significant 24 bits,\n\
00260 #           in order.\n\
00261 #   \"intensity\" - laser or pixel intensity.\n\
00262 #   \"distance\"\n\
00263 \n\
00264 # The channel name should give semantics of the channel (e.g.\n\
00265 # \"intensity\" instead of \"value\").\n\
00266 string name\n\
00267 \n\
00268 # The values array should be 1-1 with the elements of the associated\n\
00269 # PointCloud.\n\
00270 float32[] values\n\
00271 \n\
00272 ================================================================================\n\
00273 MSG: object_manipulation_msgs/SceneRegion\n\
00274 # Point cloud\n\
00275 sensor_msgs/PointCloud2 cloud\n\
00276 \n\
00277 # Indices for the region of interest\n\
00278 int32[] mask\n\
00279 \n\
00280 # One of the corresponding 2D images, if applicable\n\
00281 sensor_msgs/Image image\n\
00282 \n\
00283 # The disparity image, if applicable\n\
00284 sensor_msgs/Image disparity_image\n\
00285 \n\
00286 # Camera info for the camera that took the image\n\
00287 sensor_msgs/CameraInfo cam_info\n\
00288 \n\
00289 # a 3D region of interest for grasp planning\n\
00290 geometry_msgs/PoseStamped  roi_box_pose\n\
00291 geometry_msgs/Vector3      roi_box_dims\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: sensor_msgs/PointCloud2\n\
00295 # This message holds a collection of N-dimensional points, which may\n\
00296 # contain additional information such as normals, intensity, etc. The\n\
00297 # point data is stored as a binary blob, its layout described by the\n\
00298 # contents of the \"fields\" array.\n\
00299 \n\
00300 # The point cloud data may be organized 2d (image-like) or 1d\n\
00301 # (unordered). Point clouds organized as 2d images may be produced by\n\
00302 # camera depth sensors such as stereo or time-of-flight.\n\
00303 \n\
00304 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00305 # points).\n\
00306 Header header\n\
00307 \n\
00308 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00309 # 1 and width is the length of the point cloud.\n\
00310 uint32 height\n\
00311 uint32 width\n\
00312 \n\
00313 # Describes the channels and their layout in the binary data blob.\n\
00314 PointField[] fields\n\
00315 \n\
00316 bool    is_bigendian # Is this data bigendian?\n\
00317 uint32  point_step   # Length of a point in bytes\n\
00318 uint32  row_step     # Length of a row in bytes\n\
00319 uint8[] data         # Actual point data, size is (row_step*height)\n\
00320 \n\
00321 bool is_dense        # True if there are no invalid points\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: sensor_msgs/PointField\n\
00325 # This message holds the description of one point entry in the\n\
00326 # PointCloud2 message format.\n\
00327 uint8 INT8    = 1\n\
00328 uint8 UINT8   = 2\n\
00329 uint8 INT16   = 3\n\
00330 uint8 UINT16  = 4\n\
00331 uint8 INT32   = 5\n\
00332 uint8 UINT32  = 6\n\
00333 uint8 FLOAT32 = 7\n\
00334 uint8 FLOAT64 = 8\n\
00335 \n\
00336 string name      # Name of field\n\
00337 uint32 offset    # Offset from start of point struct\n\
00338 uint8  datatype  # Datatype enumeration, see above\n\
00339 uint32 count     # How many elements in the field\n\
00340 \n\
00341 ================================================================================\n\
00342 MSG: sensor_msgs/Image\n\
00343 # This message contains an uncompressed image\n\
00344 # (0, 0) is at top-left corner of image\n\
00345 #\n\
00346 \n\
00347 Header header        # Header timestamp should be acquisition time of image\n\
00348                      # Header frame_id should be optical frame of camera\n\
00349                      # origin of frame should be optical center of cameara\n\
00350                      # +x should point to the right in the image\n\
00351                      # +y should point down in the image\n\
00352                      # +z should point into to plane of the image\n\
00353                      # If the frame_id here and the frame_id of the CameraInfo\n\
00354                      # message associated with the image conflict\n\
00355                      # the behavior is undefined\n\
00356 \n\
00357 uint32 height         # image height, that is, number of rows\n\
00358 uint32 width          # image width, that is, number of columns\n\
00359 \n\
00360 # The legal values for encoding are in file src/image_encodings.cpp\n\
00361 # If you want to standardize a new string format, join\n\
00362 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00363 \n\
00364 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00365                       # taken from the list of strings in src/image_encodings.cpp\n\
00366 \n\
00367 uint8 is_bigendian    # is this data bigendian?\n\
00368 uint32 step           # Full row length in bytes\n\
00369 uint8[] data          # actual matrix data, size is (step * rows)\n\
00370 \n\
00371 ================================================================================\n\
00372 MSG: sensor_msgs/CameraInfo\n\
00373 # This message defines meta information for a camera. It should be in a\n\
00374 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00375 # image topics named:\n\
00376 #\n\
00377 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00378 #   image            - monochrome, distorted\n\
00379 #   image_color      - color, distorted\n\
00380 #   image_rect       - monochrome, rectified\n\
00381 #   image_rect_color - color, rectified\n\
00382 #\n\
00383 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00384 # for producing the four processed image topics from image_raw and\n\
00385 # camera_info. The meaning of the camera parameters are described in\n\
00386 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00387 #\n\
00388 # The image_geometry package provides a user-friendly interface to\n\
00389 # common operations using this meta information. If you want to, e.g.,\n\
00390 # project a 3d point into image coordinates, we strongly recommend\n\
00391 # using image_geometry.\n\
00392 #\n\
00393 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00394 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00395 # indicates an uncalibrated camera.\n\
00396 \n\
00397 #######################################################################\n\
00398 #                     Image acquisition info                          #\n\
00399 #######################################################################\n\
00400 \n\
00401 # Time of image acquisition, camera coordinate frame ID\n\
00402 Header header    # Header timestamp should be acquisition time of image\n\
00403                  # Header frame_id should be optical frame of camera\n\
00404                  # origin of frame should be optical center of camera\n\
00405                  # +x should point to the right in the image\n\
00406                  # +y should point down in the image\n\
00407                  # +z should point into the plane of the image\n\
00408 \n\
00409 \n\
00410 #######################################################################\n\
00411 #                      Calibration Parameters                         #\n\
00412 #######################################################################\n\
00413 # These are fixed during camera calibration. Their values will be the #\n\
00414 # same in all messages until the camera is recalibrated. Note that    #\n\
00415 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00416 #                                                                     #\n\
00417 # The internal parameters can be used to warp a raw (distorted) image #\n\
00418 # to:                                                                 #\n\
00419 #   1. An undistorted image (requires D and K)                        #\n\
00420 #   2. A rectified image (requires D, K, R)                           #\n\
00421 # The projection matrix P projects 3D points into the rectified image.#\n\
00422 #######################################################################\n\
00423 \n\
00424 # The image dimensions with which the camera was calibrated. Normally\n\
00425 # this will be the full camera resolution in pixels.\n\
00426 uint32 height\n\
00427 uint32 width\n\
00428 \n\
00429 # The distortion model used. Supported models are listed in\n\
00430 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00431 # simple model of radial and tangential distortion - is sufficent.\n\
00432 string distortion_model\n\
00433 \n\
00434 # The distortion parameters, size depending on the distortion model.\n\
00435 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00436 float64[] D\n\
00437 \n\
00438 # Intrinsic camera matrix for the raw (distorted) images.\n\
00439 #     [fx  0 cx]\n\
00440 # K = [ 0 fy cy]\n\
00441 #     [ 0  0  1]\n\
00442 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00443 # coordinates using the focal lengths (fx, fy) and principal point\n\
00444 # (cx, cy).\n\
00445 float64[9]  K # 3x3 row-major matrix\n\
00446 \n\
00447 # Rectification matrix (stereo cameras only)\n\
00448 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00449 # stereo image plane so that epipolar lines in both stereo images are\n\
00450 # parallel.\n\
00451 float64[9]  R # 3x3 row-major matrix\n\
00452 \n\
00453 # Projection/camera matrix\n\
00454 #     [fx'  0  cx' Tx]\n\
00455 # P = [ 0  fy' cy' Ty]\n\
00456 #     [ 0   0   1   0]\n\
00457 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00458 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00459 #  is the normal camera intrinsic matrix for the rectified image.\n\
00460 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00461 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00462 #  (cx', cy') - these may differ from the values in K.\n\
00463 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00464 #  also have R = the identity and P[1:3,1:3] = K.\n\
00465 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00466 #  position of the optical center of the second camera in the first\n\
00467 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00468 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00469 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00470 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00471 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00472 #  the rectified image is given by:\n\
00473 #  [u v w]' = P * [X Y Z 1]'\n\
00474 #         x = u / w\n\
00475 #         y = v / w\n\
00476 #  This holds for both images of a stereo pair.\n\
00477 float64[12] P # 3x4 row-major matrix\n\
00478 \n\
00479 \n\
00480 #######################################################################\n\
00481 #                      Operational Parameters                         #\n\
00482 #######################################################################\n\
00483 # These define the image region actually captured by the camera       #\n\
00484 # driver. Although they affect the geometry of the output image, they #\n\
00485 # may be changed freely without recalibrating the camera.             #\n\
00486 #######################################################################\n\
00487 \n\
00488 # Binning refers here to any camera setting which combines rectangular\n\
00489 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00490 #  resolution of the output image to\n\
00491 #  (width / binning_x) x (height / binning_y).\n\
00492 # The default values binning_x = binning_y = 0 is considered the same\n\
00493 #  as binning_x = binning_y = 1 (no subsampling).\n\
00494 uint32 binning_x\n\
00495 uint32 binning_y\n\
00496 \n\
00497 # Region of interest (subwindow of full camera resolution), given in\n\
00498 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00499 #  always denotes the same window of pixels on the camera sensor,\n\
00500 #  regardless of binning settings.\n\
00501 # The default setting of roi (all values 0) is considered the same as\n\
00502 #  full resolution (roi.width = width, roi.height = height).\n\
00503 RegionOfInterest roi\n\
00504 \n\
00505 ================================================================================\n\
00506 MSG: sensor_msgs/RegionOfInterest\n\
00507 # This message is used to specify a region of interest within an image.\n\
00508 #\n\
00509 # When used to specify the ROI setting of the camera when the image was\n\
00510 # taken, the height and width fields should either match the height and\n\
00511 # width fields for the associated image; or height = width = 0\n\
00512 # indicates that the full resolution image was captured.\n\
00513 \n\
00514 uint32 x_offset  # Leftmost pixel of the ROI\n\
00515                  # (0 if the ROI includes the left edge of the image)\n\
00516 uint32 y_offset  # Topmost pixel of the ROI\n\
00517                  # (0 if the ROI includes the top edge of the image)\n\
00518 uint32 height    # Height of ROI\n\
00519 uint32 width     # Width of ROI\n\
00520 \n\
00521 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00522 # ROI in this message. Typically this should be False if the full image\n\
00523 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00524 # used).\n\
00525 bool do_rectify\n\
00526 \n\
00527 ================================================================================\n\
00528 MSG: geometry_msgs/Vector3\n\
00529 # This represents a vector in free space. \n\
00530 \n\
00531 float64 x\n\
00532 float64 y\n\
00533 float64 z\n\
00534 ================================================================================\n\
00535 MSG: arm_navigation_msgs/Shape\n\
00536 byte SPHERE=0\n\
00537 byte BOX=1\n\
00538 byte CYLINDER=2\n\
00539 byte MESH=3\n\
00540 \n\
00541 byte type\n\
00542 \n\
00543 \n\
00544 #### define sphere, box, cylinder ####\n\
00545 # the origin of each shape is considered at the shape's center\n\
00546 \n\
00547 # for sphere\n\
00548 # radius := dimensions[0]\n\
00549 \n\
00550 # for cylinder\n\
00551 # radius := dimensions[0]\n\
00552 # length := dimensions[1]\n\
00553 # the length is along the Z axis\n\
00554 \n\
00555 # for box\n\
00556 # size_x := dimensions[0]\n\
00557 # size_y := dimensions[1]\n\
00558 # size_z := dimensions[2]\n\
00559 float64[] dimensions\n\
00560 \n\
00561 \n\
00562 #### define mesh ####\n\
00563 \n\
00564 # list of triangles; triangle k is defined by tre vertices located\n\
00565 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00566 int32[] triangles\n\
00567 geometry_msgs/Point[] vertices\n\
00568 \n\
00569 ";
00570   }
00571 
00572   static const char* value(const  ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); } 
00573 };
00574 
00575 } // namespace message_traits
00576 } // namespace ros
00577 
00578 namespace ros
00579 {
00580 namespace serialization
00581 {
00582 
00583 template<class ContainerAllocator> struct Serializer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >
00584 {
00585   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00586   {
00587     stream.next(m.graspable_objects);
00588     stream.next(m.image);
00589     stream.next(m.camera_info);
00590     stream.next(m.meshes);
00591     stream.next(m.reference_to_camera);
00592   }
00593 
00594   ROS_DECLARE_ALLINONE_SERIALIZER;
00595 }; // struct GraspableObjectList_
00596 } // namespace serialization
00597 } // namespace ros
00598 
00599 namespace ros
00600 {
00601 namespace message_operations
00602 {
00603 
00604 template<class ContainerAllocator>
00605 struct Printer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >
00606 {
00607   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> & v) 
00608   {
00609     s << indent << "graspable_objects[]" << std::endl;
00610     for (size_t i = 0; i < v.graspable_objects.size(); ++i)
00611     {
00612       s << indent << "  graspable_objects[" << i << "]: ";
00613       s << std::endl;
00614       s << indent;
00615       Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + "    ", v.graspable_objects[i]);
00616     }
00617     s << indent << "image: ";
00618 s << std::endl;
00619     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.image);
00620     s << indent << "camera_info: ";
00621 s << std::endl;
00622     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.camera_info);
00623     s << indent << "meshes[]" << std::endl;
00624     for (size_t i = 0; i < v.meshes.size(); ++i)
00625     {
00626       s << indent << "  meshes[" << i << "]: ";
00627       s << std::endl;
00628       s << indent;
00629       Printer< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::stream(s, indent + "    ", v.meshes[i]);
00630     }
00631     s << indent << "reference_to_camera: ";
00632 s << std::endl;
00633     Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + "  ", v.reference_to_camera);
00634   }
00635 };
00636 
00637 
00638 } // namespace message_operations
00639 } // namespace ros
00640 
00641 #endif // PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H
00642 


pr2_interactive_object_detection
Author(s): David Gossow
autogenerated on Fri Jan 3 2014 12:04:26