PickupResult.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/PickupResult.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/ManipulationResult.h"
00018 #include "object_manipulation_msgs/Grasp.h"
00019 #include "object_manipulation_msgs/Grasp.h"
00020 #include "object_manipulation_msgs/GraspResult.h"
00021 
00022 namespace object_manipulation_msgs
00023 {
00024 template <class ContainerAllocator>
00025 struct PickupResult_ {
00026   typedef PickupResult_<ContainerAllocator> Type;
00027 
00028   PickupResult_()
00029   : manipulation_result()
00030   , grasp()
00031   , attempted_grasps()
00032   , attempted_grasp_results()
00033   {
00034   }
00035 
00036   PickupResult_(const ContainerAllocator& _alloc)
00037   : manipulation_result(_alloc)
00038   , grasp(_alloc)
00039   , attempted_grasps(_alloc)
00040   , attempted_grasp_results(_alloc)
00041   {
00042   }
00043 
00044   typedef  ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator>  _manipulation_result_type;
00045    ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator>  manipulation_result;
00046 
00047   typedef  ::object_manipulation_msgs::Grasp_<ContainerAllocator>  _grasp_type;
00048    ::object_manipulation_msgs::Grasp_<ContainerAllocator>  grasp;
00049 
00050   typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other >  _attempted_grasps_type;
00051   std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other >  attempted_grasps;
00052 
00053   typedef std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other >  _attempted_grasp_results_type;
00054   std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other >  attempted_grasp_results;
00055 
00056 
00057   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > Ptr;
00058   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult_<ContainerAllocator>  const> ConstPtr;
00059   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00060 }; // struct PickupResult
00061 typedef  ::object_manipulation_msgs::PickupResult_<std::allocator<void> > PickupResult;
00062 
00063 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult> PickupResultPtr;
00064 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult const> PickupResultConstPtr;
00065 
00066 
00067 template<typename ContainerAllocator>
00068 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::PickupResult_<ContainerAllocator> & v)
00069 {
00070   ros::message_operations::Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >::stream(s, "", v);
00071   return s;}
00072 
00073 } // namespace object_manipulation_msgs
00074 
00075 namespace ros
00076 {
00077 namespace message_traits
00078 {
00079 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > : public TrueType {};
00080 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupResult_<ContainerAllocator>  const> : public TrueType {};
00081 template<class ContainerAllocator>
00082 struct MD5Sum< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > {
00083   static const char* value() 
00084   {
00085     return "e37faa4bc17adb31e87f0a21276cde44";
00086   }
00087 
00088   static const char* value(const  ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); } 
00089   static const uint64_t static_value1 = 0xe37faa4bc17adb31ULL;
00090   static const uint64_t static_value2 = 0xe87f0a21276cde44ULL;
00091 };
00092 
00093 template<class ContainerAllocator>
00094 struct DataType< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > {
00095   static const char* value() 
00096   {
00097     return "object_manipulation_msgs/PickupResult";
00098   }
00099 
00100   static const char* value(const  ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); } 
00101 };
00102 
00103 template<class ContainerAllocator>
00104 struct Definition< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > {
00105   static const char* value() 
00106   {
00107     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00108 \n\
00109 # The overall result of the pickup attempt\n\
00110 ManipulationResult manipulation_result\n\
00111 \n\
00112 # The performed grasp, if attempt was successful\n\
00113 Grasp grasp\n\
00114 \n\
00115 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00116 # the successful one should be the last one in this list\n\
00117 Grasp[] attempted_grasps\n\
00118 \n\
00119 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00120 GraspResult[] attempted_grasp_results\n\
00121 \n\
00122 \n\
00123 ================================================================================\n\
00124 MSG: object_manipulation_msgs/ManipulationResult\n\
00125 # Result codes for manipulation tasks\n\
00126 \n\
00127 # task completed as expected\n\
00128 # generally means you can proceed as planned\n\
00129 int32 SUCCESS = 1\n\
00130 \n\
00131 # task not possible (e.g. out of reach or obstacles in the way)\n\
00132 # generally means that the world was not disturbed, so you can try another task\n\
00133 int32 UNFEASIBLE = -1\n\
00134 \n\
00135 # task was thought possible, but failed due to unexpected events during execution\n\
00136 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00137 # your sensed world model before proceeding to another task\n\
00138 int32 FAILED = -2\n\
00139 \n\
00140 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00141 # generally requires human attention\n\
00142 int32 ERROR = -3\n\
00143 \n\
00144 # means that at some point during execution we ended up in a state that the collision-aware\n\
00145 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00146 # probably need a new collision map to move the arm out of the stuck position\n\
00147 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00148 \n\
00149 # specific to grasp actions\n\
00150 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00151 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00152 int32 LIFT_FAILED = -5\n\
00153 \n\
00154 # specific to place actions\n\
00155 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00156 # it is likely that the collision environment will see collisions between the hand and the object\n\
00157 int32 RETREAT_FAILED = -6\n\
00158 \n\
00159 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00160 int32 CANCELLED = -7\n\
00161 \n\
00162 # the actual value of this error code\n\
00163 int32 value\n\
00164 \n\
00165 ================================================================================\n\
00166 MSG: object_manipulation_msgs/Grasp\n\
00167 \n\
00168 # The internal posture of the hand for the pre-grasp\n\
00169 # only positions are used\n\
00170 sensor_msgs/JointState pre_grasp_posture\n\
00171 \n\
00172 # The internal posture of the hand for the grasp\n\
00173 # positions and efforts are used\n\
00174 sensor_msgs/JointState grasp_posture\n\
00175 \n\
00176 # The position of the end-effector for the grasp relative to a reference frame \n\
00177 # (that is always specified elsewhere, not in this message)\n\
00178 geometry_msgs/Pose grasp_pose\n\
00179 \n\
00180 # The estimated probability of success for this grasp\n\
00181 float64 success_probability\n\
00182 \n\
00183 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00184 bool cluster_rep\n\
00185 \n\
00186 # how far the pre-grasp should ideally be away from the grasp\n\
00187 float32 desired_approach_distance\n\
00188 \n\
00189 # how much distance between pre-grasp and grasp must actually be feasible \n\
00190 # for the grasp not to be rejected\n\
00191 float32 min_approach_distance\n\
00192 \n\
00193 # an optional list of obstacles that we have semantic information about\n\
00194 # and that we expect might move in the course of executing this grasp\n\
00195 # the grasp planner is expected to make sure they move in an OK way; during\n\
00196 # execution, grasp executors will not check for collisions against these objects\n\
00197 GraspableObject[] moved_obstacles\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: sensor_msgs/JointState\n\
00201 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00202 #\n\
00203 # The state of each joint (revolute or prismatic) is defined by:\n\
00204 #  * the position of the joint (rad or m),\n\
00205 #  * the velocity of the joint (rad/s or m/s) and \n\
00206 #  * the effort that is applied in the joint (Nm or N).\n\
00207 #\n\
00208 # Each joint is uniquely identified by its name\n\
00209 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00210 # in one message have to be recorded at the same time.\n\
00211 #\n\
00212 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00213 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00214 # effort associated with them, you can leave the effort array empty. \n\
00215 #\n\
00216 # All arrays in this message should have the same size, or be empty.\n\
00217 # This is the only way to uniquely associate the joint name with the correct\n\
00218 # states.\n\
00219 \n\
00220 \n\
00221 Header header\n\
00222 \n\
00223 string[] name\n\
00224 float64[] position\n\
00225 float64[] velocity\n\
00226 float64[] effort\n\
00227 \n\
00228 ================================================================================\n\
00229 MSG: std_msgs/Header\n\
00230 # Standard metadata for higher-level stamped data types.\n\
00231 # This is generally used to communicate timestamped data \n\
00232 # in a particular coordinate frame.\n\
00233 # \n\
00234 # sequence ID: consecutively increasing ID \n\
00235 uint32 seq\n\
00236 #Two-integer timestamp that is expressed as:\n\
00237 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00238 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00239 # time-handling sugar is provided by the client library\n\
00240 time stamp\n\
00241 #Frame this data is associated with\n\
00242 # 0: no frame\n\
00243 # 1: global frame\n\
00244 string frame_id\n\
00245 \n\
00246 ================================================================================\n\
00247 MSG: geometry_msgs/Pose\n\
00248 # A representation of pose in free space, composed of postion and orientation. \n\
00249 Point position\n\
00250 Quaternion orientation\n\
00251 \n\
00252 ================================================================================\n\
00253 MSG: geometry_msgs/Point\n\
00254 # This contains the position of a point in free space\n\
00255 float64 x\n\
00256 float64 y\n\
00257 float64 z\n\
00258 \n\
00259 ================================================================================\n\
00260 MSG: geometry_msgs/Quaternion\n\
00261 # This represents an orientation in free space in quaternion form.\n\
00262 \n\
00263 float64 x\n\
00264 float64 y\n\
00265 float64 z\n\
00266 float64 w\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: object_manipulation_msgs/GraspableObject\n\
00270 # an object that the object_manipulator can work on\n\
00271 \n\
00272 # a graspable object can be represented in multiple ways. This message\n\
00273 # can contain all of them. Which one is actually used is up to the receiver\n\
00274 # of this message. When adding new representations, one must be careful that\n\
00275 # they have reasonable lightweight defaults indicating that that particular\n\
00276 # representation is not available.\n\
00277 \n\
00278 # the tf frame to be used as a reference frame when combining information from\n\
00279 # the different representations below\n\
00280 string reference_frame_id\n\
00281 \n\
00282 # potential recognition results from a database of models\n\
00283 # all poses are relative to the object reference pose\n\
00284 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00285 \n\
00286 # the point cloud itself\n\
00287 sensor_msgs/PointCloud cluster\n\
00288 \n\
00289 # a region of a PointCloud2 of interest\n\
00290 object_manipulation_msgs/SceneRegion region\n\
00291 \n\
00292 # the name that this object has in the collision environment\n\
00293 string collision_name\n\
00294 ================================================================================\n\
00295 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00296 # Informs that a specific model from the Model Database has been \n\
00297 # identified at a certain location\n\
00298 \n\
00299 # the database id of the model\n\
00300 int32 model_id\n\
00301 \n\
00302 # the pose that it can be found in\n\
00303 geometry_msgs/PoseStamped pose\n\
00304 \n\
00305 # a measure of the confidence level in this detection result\n\
00306 float32 confidence\n\
00307 \n\
00308 # the name of the object detector that generated this detection result\n\
00309 string detector_name\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: geometry_msgs/PoseStamped\n\
00313 # A Pose with reference coordinate frame and timestamp\n\
00314 Header header\n\
00315 Pose pose\n\
00316 \n\
00317 ================================================================================\n\
00318 MSG: sensor_msgs/PointCloud\n\
00319 # This message holds a collection of 3d points, plus optional additional\n\
00320 # information about each point.\n\
00321 \n\
00322 # Time of sensor data acquisition, coordinate frame ID.\n\
00323 Header header\n\
00324 \n\
00325 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00326 # in the frame given in the header.\n\
00327 geometry_msgs/Point32[] points\n\
00328 \n\
00329 # Each channel should have the same number of elements as points array,\n\
00330 # and the data in each channel should correspond 1:1 with each point.\n\
00331 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00332 ChannelFloat32[] channels\n\
00333 \n\
00334 ================================================================================\n\
00335 MSG: geometry_msgs/Point32\n\
00336 # This contains the position of a point in free space(with 32 bits of precision).\n\
00337 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00338 # \n\
00339 # This recommendation is to promote interoperability.  \n\
00340 #\n\
00341 # This message is designed to take up less space when sending\n\
00342 # lots of points at once, as in the case of a PointCloud.  \n\
00343 \n\
00344 float32 x\n\
00345 float32 y\n\
00346 float32 z\n\
00347 ================================================================================\n\
00348 MSG: sensor_msgs/ChannelFloat32\n\
00349 # This message is used by the PointCloud message to hold optional data\n\
00350 # associated with each point in the cloud. The length of the values\n\
00351 # array should be the same as the length of the points array in the\n\
00352 # PointCloud, and each value should be associated with the corresponding\n\
00353 # point.\n\
00354 \n\
00355 # Channel names in existing practice include:\n\
00356 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00357 #              This is opposite to usual conventions but remains for\n\
00358 #              historical reasons. The newer PointCloud2 message has no\n\
00359 #              such problem.\n\
00360 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00361 #           (R,G,B) values packed into the least significant 24 bits,\n\
00362 #           in order.\n\
00363 #   \"intensity\" - laser or pixel intensity.\n\
00364 #   \"distance\"\n\
00365 \n\
00366 # The channel name should give semantics of the channel (e.g.\n\
00367 # \"intensity\" instead of \"value\").\n\
00368 string name\n\
00369 \n\
00370 # The values array should be 1-1 with the elements of the associated\n\
00371 # PointCloud.\n\
00372 float32[] values\n\
00373 \n\
00374 ================================================================================\n\
00375 MSG: object_manipulation_msgs/SceneRegion\n\
00376 # Point cloud\n\
00377 sensor_msgs/PointCloud2 cloud\n\
00378 \n\
00379 # Indices for the region of interest\n\
00380 int32[] mask\n\
00381 \n\
00382 # One of the corresponding 2D images, if applicable\n\
00383 sensor_msgs/Image image\n\
00384 \n\
00385 # The disparity image, if applicable\n\
00386 sensor_msgs/Image disparity_image\n\
00387 \n\
00388 # Camera info for the camera that took the image\n\
00389 sensor_msgs/CameraInfo cam_info\n\
00390 \n\
00391 # a 3D region of interest for grasp planning\n\
00392 geometry_msgs/PoseStamped  roi_box_pose\n\
00393 geometry_msgs/Vector3      roi_box_dims\n\
00394 \n\
00395 ================================================================================\n\
00396 MSG: sensor_msgs/PointCloud2\n\
00397 # This message holds a collection of N-dimensional points, which may\n\
00398 # contain additional information such as normals, intensity, etc. The\n\
00399 # point data is stored as a binary blob, its layout described by the\n\
00400 # contents of the \"fields\" array.\n\
00401 \n\
00402 # The point cloud data may be organized 2d (image-like) or 1d\n\
00403 # (unordered). Point clouds organized as 2d images may be produced by\n\
00404 # camera depth sensors such as stereo or time-of-flight.\n\
00405 \n\
00406 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00407 # points).\n\
00408 Header header\n\
00409 \n\
00410 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00411 # 1 and width is the length of the point cloud.\n\
00412 uint32 height\n\
00413 uint32 width\n\
00414 \n\
00415 # Describes the channels and their layout in the binary data blob.\n\
00416 PointField[] fields\n\
00417 \n\
00418 bool    is_bigendian # Is this data bigendian?\n\
00419 uint32  point_step   # Length of a point in bytes\n\
00420 uint32  row_step     # Length of a row in bytes\n\
00421 uint8[] data         # Actual point data, size is (row_step*height)\n\
00422 \n\
00423 bool is_dense        # True if there are no invalid points\n\
00424 \n\
00425 ================================================================================\n\
00426 MSG: sensor_msgs/PointField\n\
00427 # This message holds the description of one point entry in the\n\
00428 # PointCloud2 message format.\n\
00429 uint8 INT8    = 1\n\
00430 uint8 UINT8   = 2\n\
00431 uint8 INT16   = 3\n\
00432 uint8 UINT16  = 4\n\
00433 uint8 INT32   = 5\n\
00434 uint8 UINT32  = 6\n\
00435 uint8 FLOAT32 = 7\n\
00436 uint8 FLOAT64 = 8\n\
00437 \n\
00438 string name      # Name of field\n\
00439 uint32 offset    # Offset from start of point struct\n\
00440 uint8  datatype  # Datatype enumeration, see above\n\
00441 uint32 count     # How many elements in the field\n\
00442 \n\
00443 ================================================================================\n\
00444 MSG: sensor_msgs/Image\n\
00445 # This message contains an uncompressed image\n\
00446 # (0, 0) is at top-left corner of image\n\
00447 #\n\
00448 \n\
00449 Header header        # Header timestamp should be acquisition time of image\n\
00450                      # Header frame_id should be optical frame of camera\n\
00451                      # origin of frame should be optical center of cameara\n\
00452                      # +x should point to the right in the image\n\
00453                      # +y should point down in the image\n\
00454                      # +z should point into to plane of the image\n\
00455                      # If the frame_id here and the frame_id of the CameraInfo\n\
00456                      # message associated with the image conflict\n\
00457                      # the behavior is undefined\n\
00458 \n\
00459 uint32 height         # image height, that is, number of rows\n\
00460 uint32 width          # image width, that is, number of columns\n\
00461 \n\
00462 # The legal values for encoding are in file src/image_encodings.cpp\n\
00463 # If you want to standardize a new string format, join\n\
00464 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00465 \n\
00466 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00467                       # taken from the list of strings in src/image_encodings.cpp\n\
00468 \n\
00469 uint8 is_bigendian    # is this data bigendian?\n\
00470 uint32 step           # Full row length in bytes\n\
00471 uint8[] data          # actual matrix data, size is (step * rows)\n\
00472 \n\
00473 ================================================================================\n\
00474 MSG: sensor_msgs/CameraInfo\n\
00475 # This message defines meta information for a camera. It should be in a\n\
00476 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00477 # image topics named:\n\
00478 #\n\
00479 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00480 #   image            - monochrome, distorted\n\
00481 #   image_color      - color, distorted\n\
00482 #   image_rect       - monochrome, rectified\n\
00483 #   image_rect_color - color, rectified\n\
00484 #\n\
00485 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00486 # for producing the four processed image topics from image_raw and\n\
00487 # camera_info. The meaning of the camera parameters are described in\n\
00488 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00489 #\n\
00490 # The image_geometry package provides a user-friendly interface to\n\
00491 # common operations using this meta information. If you want to, e.g.,\n\
00492 # project a 3d point into image coordinates, we strongly recommend\n\
00493 # using image_geometry.\n\
00494 #\n\
00495 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00496 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00497 # indicates an uncalibrated camera.\n\
00498 \n\
00499 #######################################################################\n\
00500 #                     Image acquisition info                          #\n\
00501 #######################################################################\n\
00502 \n\
00503 # Time of image acquisition, camera coordinate frame ID\n\
00504 Header header    # Header timestamp should be acquisition time of image\n\
00505                  # Header frame_id should be optical frame of camera\n\
00506                  # origin of frame should be optical center of camera\n\
00507                  # +x should point to the right in the image\n\
00508                  # +y should point down in the image\n\
00509                  # +z should point into the plane of the image\n\
00510 \n\
00511 \n\
00512 #######################################################################\n\
00513 #                      Calibration Parameters                         #\n\
00514 #######################################################################\n\
00515 # These are fixed during camera calibration. Their values will be the #\n\
00516 # same in all messages until the camera is recalibrated. Note that    #\n\
00517 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00518 #                                                                     #\n\
00519 # The internal parameters can be used to warp a raw (distorted) image #\n\
00520 # to:                                                                 #\n\
00521 #   1. An undistorted image (requires D and K)                        #\n\
00522 #   2. A rectified image (requires D, K, R)                           #\n\
00523 # The projection matrix P projects 3D points into the rectified image.#\n\
00524 #######################################################################\n\
00525 \n\
00526 # The image dimensions with which the camera was calibrated. Normally\n\
00527 # this will be the full camera resolution in pixels.\n\
00528 uint32 height\n\
00529 uint32 width\n\
00530 \n\
00531 # The distortion model used. Supported models are listed in\n\
00532 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00533 # simple model of radial and tangential distortion - is sufficent.\n\
00534 string distortion_model\n\
00535 \n\
00536 # The distortion parameters, size depending on the distortion model.\n\
00537 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00538 float64[] D\n\
00539 \n\
00540 # Intrinsic camera matrix for the raw (distorted) images.\n\
00541 #     [fx  0 cx]\n\
00542 # K = [ 0 fy cy]\n\
00543 #     [ 0  0  1]\n\
00544 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00545 # coordinates using the focal lengths (fx, fy) and principal point\n\
00546 # (cx, cy).\n\
00547 float64[9]  K # 3x3 row-major matrix\n\
00548 \n\
00549 # Rectification matrix (stereo cameras only)\n\
00550 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00551 # stereo image plane so that epipolar lines in both stereo images are\n\
00552 # parallel.\n\
00553 float64[9]  R # 3x3 row-major matrix\n\
00554 \n\
00555 # Projection/camera matrix\n\
00556 #     [fx'  0  cx' Tx]\n\
00557 # P = [ 0  fy' cy' Ty]\n\
00558 #     [ 0   0   1   0]\n\
00559 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00560 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00561 #  is the normal camera intrinsic matrix for the rectified image.\n\
00562 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00563 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00564 #  (cx', cy') - these may differ from the values in K.\n\
00565 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00566 #  also have R = the identity and P[1:3,1:3] = K.\n\
00567 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00568 #  position of the optical center of the second camera in the first\n\
00569 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00570 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00571 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00572 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00573 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00574 #  the rectified image is given by:\n\
00575 #  [u v w]' = P * [X Y Z 1]'\n\
00576 #         x = u / w\n\
00577 #         y = v / w\n\
00578 #  This holds for both images of a stereo pair.\n\
00579 float64[12] P # 3x4 row-major matrix\n\
00580 \n\
00581 \n\
00582 #######################################################################\n\
00583 #                      Operational Parameters                         #\n\
00584 #######################################################################\n\
00585 # These define the image region actually captured by the camera       #\n\
00586 # driver. Although they affect the geometry of the output image, they #\n\
00587 # may be changed freely without recalibrating the camera.             #\n\
00588 #######################################################################\n\
00589 \n\
00590 # Binning refers here to any camera setting which combines rectangular\n\
00591 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00592 #  resolution of the output image to\n\
00593 #  (width / binning_x) x (height / binning_y).\n\
00594 # The default values binning_x = binning_y = 0 is considered the same\n\
00595 #  as binning_x = binning_y = 1 (no subsampling).\n\
00596 uint32 binning_x\n\
00597 uint32 binning_y\n\
00598 \n\
00599 # Region of interest (subwindow of full camera resolution), given in\n\
00600 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00601 #  always denotes the same window of pixels on the camera sensor,\n\
00602 #  regardless of binning settings.\n\
00603 # The default setting of roi (all values 0) is considered the same as\n\
00604 #  full resolution (roi.width = width, roi.height = height).\n\
00605 RegionOfInterest roi\n\
00606 \n\
00607 ================================================================================\n\
00608 MSG: sensor_msgs/RegionOfInterest\n\
00609 # This message is used to specify a region of interest within an image.\n\
00610 #\n\
00611 # When used to specify the ROI setting of the camera when the image was\n\
00612 # taken, the height and width fields should either match the height and\n\
00613 # width fields for the associated image; or height = width = 0\n\
00614 # indicates that the full resolution image was captured.\n\
00615 \n\
00616 uint32 x_offset  # Leftmost pixel of the ROI\n\
00617                  # (0 if the ROI includes the left edge of the image)\n\
00618 uint32 y_offset  # Topmost pixel of the ROI\n\
00619                  # (0 if the ROI includes the top edge of the image)\n\
00620 uint32 height    # Height of ROI\n\
00621 uint32 width     # Width of ROI\n\
00622 \n\
00623 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00624 # ROI in this message. Typically this should be False if the full image\n\
00625 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00626 # used).\n\
00627 bool do_rectify\n\
00628 \n\
00629 ================================================================================\n\
00630 MSG: geometry_msgs/Vector3\n\
00631 # This represents a vector in free space. \n\
00632 \n\
00633 float64 x\n\
00634 float64 y\n\
00635 float64 z\n\
00636 ================================================================================\n\
00637 MSG: object_manipulation_msgs/GraspResult\n\
00638 int32 SUCCESS = 1\n\
00639 int32 GRASP_OUT_OF_REACH = 2\n\
00640 int32 GRASP_IN_COLLISION = 3\n\
00641 int32 GRASP_UNFEASIBLE = 4\n\
00642 int32 PREGRASP_OUT_OF_REACH = 5\n\
00643 int32 PREGRASP_IN_COLLISION = 6\n\
00644 int32 PREGRASP_UNFEASIBLE = 7\n\
00645 int32 LIFT_OUT_OF_REACH = 8\n\
00646 int32 LIFT_IN_COLLISION = 9\n\
00647 int32 LIFT_UNFEASIBLE = 10\n\
00648 int32 MOVE_ARM_FAILED = 11\n\
00649 int32 GRASP_FAILED = 12\n\
00650 int32 LIFT_FAILED = 13\n\
00651 int32 RETREAT_FAILED = 14\n\
00652 int32 result_code\n\
00653 \n\
00654 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
00655 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
00656 # before proceeding\n\
00657 bool continuation_possible\n\
00658 \n\
00659 ";
00660   }
00661 
00662   static const char* value(const  ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); } 
00663 };
00664 
00665 } // namespace message_traits
00666 } // namespace ros
00667 
00668 namespace ros
00669 {
00670 namespace serialization
00671 {
00672 
00673 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >
00674 {
00675   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00676   {
00677     stream.next(m.manipulation_result);
00678     stream.next(m.grasp);
00679     stream.next(m.attempted_grasps);
00680     stream.next(m.attempted_grasp_results);
00681   }
00682 
00683   ROS_DECLARE_ALLINONE_SERIALIZER;
00684 }; // struct PickupResult_
00685 } // namespace serialization
00686 } // namespace ros
00687 
00688 namespace ros
00689 {
00690 namespace message_operations
00691 {
00692 
00693 template<class ContainerAllocator>
00694 struct Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >
00695 {
00696   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::PickupResult_<ContainerAllocator> & v) 
00697   {
00698     s << indent << "manipulation_result: ";
00699 s << std::endl;
00700     Printer< ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> >::stream(s, indent + "  ", v.manipulation_result);
00701     s << indent << "grasp: ";
00702 s << std::endl;
00703     Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + "  ", v.grasp);
00704     s << indent << "attempted_grasps[]" << std::endl;
00705     for (size_t i = 0; i < v.attempted_grasps.size(); ++i)
00706     {
00707       s << indent << "  attempted_grasps[" << i << "]: ";
00708       s << std::endl;
00709       s << indent;
00710       Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + "    ", v.attempted_grasps[i]);
00711     }
00712     s << indent << "attempted_grasp_results[]" << std::endl;
00713     for (size_t i = 0; i < v.attempted_grasp_results.size(); ++i)
00714     {
00715       s << indent << "  attempted_grasp_results[" << i << "]: ";
00716       s << std::endl;
00717       s << indent;
00718       Printer< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::stream(s, indent + "    ", v.attempted_grasp_results[i]);
00719     }
00720   }
00721 };
00722 
00723 
00724 } // namespace message_operations
00725 } // namespace ros
00726 
00727 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H
00728 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12