00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "object_manipulation_msgs/Grasp.h"
00019 #include "object_manipulation_msgs/GripperTranslation.h"
00020 #include "arm_navigation_msgs/Constraints.h"
00021 #include "arm_navigation_msgs/OrderedCollisionOperations.h"
00022 #include "arm_navigation_msgs/LinkPadding.h"
00023 #include "object_manipulation_msgs/GraspableObject.h"
00024
00025 namespace object_manipulation_msgs
00026 {
00027 template <class ContainerAllocator>
00028 struct PickupGoal_ {
00029 typedef PickupGoal_<ContainerAllocator> Type;
00030
00031 PickupGoal_()
00032 : arm_name()
00033 , target()
00034 , desired_grasps()
00035 , lift()
00036 , collision_object_name()
00037 , collision_support_surface_name()
00038 , allow_gripper_support_collision(false)
00039 , use_reactive_execution(false)
00040 , use_reactive_lift(false)
00041 , only_perform_feasibility_test(false)
00042 , ignore_collisions(false)
00043 , path_constraints()
00044 , additional_collision_operations()
00045 , additional_link_padding()
00046 , movable_obstacles()
00047 , max_contact_force(0.0)
00048 {
00049 }
00050
00051 PickupGoal_(const ContainerAllocator& _alloc)
00052 : arm_name(_alloc)
00053 , target(_alloc)
00054 , desired_grasps(_alloc)
00055 , lift(_alloc)
00056 , collision_object_name(_alloc)
00057 , collision_support_surface_name(_alloc)
00058 , allow_gripper_support_collision(false)
00059 , use_reactive_execution(false)
00060 , use_reactive_lift(false)
00061 , only_perform_feasibility_test(false)
00062 , ignore_collisions(false)
00063 , path_constraints(_alloc)
00064 , additional_collision_operations(_alloc)
00065 , additional_link_padding(_alloc)
00066 , movable_obstacles(_alloc)
00067 , max_contact_force(0.0)
00068 {
00069 }
00070
00071 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00072 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00073
00074 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00075 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00076
00077 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _desired_grasps_type;
00078 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > desired_grasps;
00079
00080 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type;
00081 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift;
00082
00083 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00084 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00085
00086 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00087 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00088
00089 typedef uint8_t _allow_gripper_support_collision_type;
00090 uint8_t allow_gripper_support_collision;
00091
00092 typedef uint8_t _use_reactive_execution_type;
00093 uint8_t use_reactive_execution;
00094
00095 typedef uint8_t _use_reactive_lift_type;
00096 uint8_t use_reactive_lift;
00097
00098 typedef uint8_t _only_perform_feasibility_test_type;
00099 uint8_t only_perform_feasibility_test;
00100
00101 typedef uint8_t _ignore_collisions_type;
00102 uint8_t ignore_collisions;
00103
00104 typedef ::arm_navigation_msgs::Constraints_<ContainerAllocator> _path_constraints_type;
00105 ::arm_navigation_msgs::Constraints_<ContainerAllocator> path_constraints;
00106
00107 typedef ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type;
00108 ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations;
00109
00110 typedef std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type;
00111 std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding;
00112
00113 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type;
00114 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles;
00115
00116 typedef float _max_contact_force_type;
00117 float max_contact_force;
00118
00119
00120 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > Ptr;
00121 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> ConstPtr;
00122 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00123 };
00124 typedef ::object_manipulation_msgs::PickupGoal_<std::allocator<void> > PickupGoal;
00125
00126 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal> PickupGoalPtr;
00127 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal const> PickupGoalConstPtr;
00128
00129
00130 template<typename ContainerAllocator>
00131 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v)
00132 {
00133 ros::message_operations::Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, "", v);
00134 return s;}
00135
00136 }
00137
00138 namespace ros
00139 {
00140 namespace message_traits
00141 {
00142 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > : public TrueType {};
00143 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> : public TrueType {};
00144 template<class ContainerAllocator>
00145 struct MD5Sum< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00146 static const char* value()
00147 {
00148 return "49435aa8e5853b02489b00dc68d7fa3b";
00149 }
00150
00151 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00152 static const uint64_t static_value1 = 0x49435aa8e5853b02ULL;
00153 static const uint64_t static_value2 = 0x489b00dc68d7fa3bULL;
00154 };
00155
00156 template<class ContainerAllocator>
00157 struct DataType< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00158 static const char* value()
00159 {
00160 return "object_manipulation_msgs/PickupGoal";
00161 }
00162
00163 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00164 };
00165
00166 template<class ContainerAllocator>
00167 struct Definition< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00168 static const char* value()
00169 {
00170 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00171 # An action for picking up an object\n\
00172 \n\
00173 # which arm to be used for grasping\n\
00174 string arm_name\n\
00175 \n\
00176 # the object to be grasped\n\
00177 GraspableObject target\n\
00178 \n\
00179 # a list of grasps to be used\n\
00180 # if empty, the grasp executive will call one of its own planners\n\
00181 Grasp[] desired_grasps\n\
00182 \n\
00183 # how the object should be lifted after the grasp\n\
00184 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00185 # or the gripper_frame specified in your hand description file\n\
00186 GripperTranslation lift\n\
00187 \n\
00188 # the name that the target object has in the collision map\n\
00189 # can be left empty if no name is available\n\
00190 string collision_object_name\n\
00191 \n\
00192 # the name that the support surface (e.g. table) has in the collision map\n\
00193 # can be left empty if no name is available\n\
00194 string collision_support_surface_name\n\
00195 \n\
00196 # whether collisions between the gripper and the support surface should be acceptable\n\
00197 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00198 # pre-grasp location are still not allowed even if this is set to true.\n\
00199 bool allow_gripper_support_collision\n\
00200 \n\
00201 # whether reactive grasp execution using tactile sensors should be used\n\
00202 bool use_reactive_execution\n\
00203 \n\
00204 # whether reactive object lifting based on tactile sensors should be used\n\
00205 bool use_reactive_lift\n\
00206 \n\
00207 # set this to true if you only want to query the manipulation pipeline as to what \n\
00208 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00209 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00210 # movement will be attempted\n\
00211 bool only_perform_feasibility_test\n\
00212 \n\
00213 # set this to true if you want to ignore all collisions throughout the pickup \n\
00214 # and also move directly to the pre-grasp using Cartesian controllers\n\
00215 bool ignore_collisions\n\
00216 \n\
00217 # OPTIONAL (These will not have to be filled out most of the time)\n\
00218 # constraints to be imposed on every point in the motion of the arm\n\
00219 arm_navigation_msgs/Constraints path_constraints\n\
00220 \n\
00221 # OPTIONAL (These will not have to be filled out most of the time)\n\
00222 # additional collision operations to be used for every arm movement performed\n\
00223 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00224 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00225 # with care and only if special behaviors are desired\n\
00226 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00227 \n\
00228 # OPTIONAL (These will not have to be filled out most of the time)\n\
00229 # additional link paddings to be used for every arm movement performed\n\
00230 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00231 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00232 # with care and only if special behaviors are desired\n\
00233 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00234 \n\
00235 # an optional list of obstacles that we have semantic information about\n\
00236 # and that can be moved in the course of grasping\n\
00237 GraspableObject[] movable_obstacles\n\
00238 \n\
00239 # the maximum contact force to use while grasping (<=0 to disable)\n\
00240 float32 max_contact_force\n\
00241 \n\
00242 \n\
00243 ================================================================================\n\
00244 MSG: object_manipulation_msgs/GraspableObject\n\
00245 # an object that the object_manipulator can work on\n\
00246 \n\
00247 # a graspable object can be represented in multiple ways. This message\n\
00248 # can contain all of them. Which one is actually used is up to the receiver\n\
00249 # of this message. When adding new representations, one must be careful that\n\
00250 # they have reasonable lightweight defaults indicating that that particular\n\
00251 # representation is not available.\n\
00252 \n\
00253 # the tf frame to be used as a reference frame when combining information from\n\
00254 # the different representations below\n\
00255 string reference_frame_id\n\
00256 \n\
00257 # potential recognition results from a database of models\n\
00258 # all poses are relative to the object reference pose\n\
00259 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00260 \n\
00261 # the point cloud itself\n\
00262 sensor_msgs/PointCloud cluster\n\
00263 \n\
00264 # a region of a PointCloud2 of interest\n\
00265 object_manipulation_msgs/SceneRegion region\n\
00266 \n\
00267 # the name that this object has in the collision environment\n\
00268 string collision_name\n\
00269 ================================================================================\n\
00270 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00271 # Informs that a specific model from the Model Database has been \n\
00272 # identified at a certain location\n\
00273 \n\
00274 # the database id of the model\n\
00275 int32 model_id\n\
00276 \n\
00277 # the pose that it can be found in\n\
00278 geometry_msgs/PoseStamped pose\n\
00279 \n\
00280 # a measure of the confidence level in this detection result\n\
00281 float32 confidence\n\
00282 \n\
00283 # the name of the object detector that generated this detection result\n\
00284 string detector_name\n\
00285 \n\
00286 ================================================================================\n\
00287 MSG: geometry_msgs/PoseStamped\n\
00288 # A Pose with reference coordinate frame and timestamp\n\
00289 Header header\n\
00290 Pose pose\n\
00291 \n\
00292 ================================================================================\n\
00293 MSG: std_msgs/Header\n\
00294 # Standard metadata for higher-level stamped data types.\n\
00295 # This is generally used to communicate timestamped data \n\
00296 # in a particular coordinate frame.\n\
00297 # \n\
00298 # sequence ID: consecutively increasing ID \n\
00299 uint32 seq\n\
00300 #Two-integer timestamp that is expressed as:\n\
00301 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00302 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00303 # time-handling sugar is provided by the client library\n\
00304 time stamp\n\
00305 #Frame this data is associated with\n\
00306 # 0: no frame\n\
00307 # 1: global frame\n\
00308 string frame_id\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: geometry_msgs/Pose\n\
00312 # A representation of pose in free space, composed of postion and orientation. \n\
00313 Point position\n\
00314 Quaternion orientation\n\
00315 \n\
00316 ================================================================================\n\
00317 MSG: geometry_msgs/Point\n\
00318 # This contains the position of a point in free space\n\
00319 float64 x\n\
00320 float64 y\n\
00321 float64 z\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: geometry_msgs/Quaternion\n\
00325 # This represents an orientation in free space in quaternion form.\n\
00326 \n\
00327 float64 x\n\
00328 float64 y\n\
00329 float64 z\n\
00330 float64 w\n\
00331 \n\
00332 ================================================================================\n\
00333 MSG: sensor_msgs/PointCloud\n\
00334 # This message holds a collection of 3d points, plus optional additional\n\
00335 # information about each point.\n\
00336 \n\
00337 # Time of sensor data acquisition, coordinate frame ID.\n\
00338 Header header\n\
00339 \n\
00340 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00341 # in the frame given in the header.\n\
00342 geometry_msgs/Point32[] points\n\
00343 \n\
00344 # Each channel should have the same number of elements as points array,\n\
00345 # and the data in each channel should correspond 1:1 with each point.\n\
00346 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00347 ChannelFloat32[] channels\n\
00348 \n\
00349 ================================================================================\n\
00350 MSG: geometry_msgs/Point32\n\
00351 # This contains the position of a point in free space(with 32 bits of precision).\n\
00352 # It is recommeded to use Point wherever possible instead of Point32. \n\
00353 # \n\
00354 # This recommendation is to promote interoperability. \n\
00355 #\n\
00356 # This message is designed to take up less space when sending\n\
00357 # lots of points at once, as in the case of a PointCloud. \n\
00358 \n\
00359 float32 x\n\
00360 float32 y\n\
00361 float32 z\n\
00362 ================================================================================\n\
00363 MSG: sensor_msgs/ChannelFloat32\n\
00364 # This message is used by the PointCloud message to hold optional data\n\
00365 # associated with each point in the cloud. The length of the values\n\
00366 # array should be the same as the length of the points array in the\n\
00367 # PointCloud, and each value should be associated with the corresponding\n\
00368 # point.\n\
00369 \n\
00370 # Channel names in existing practice include:\n\
00371 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00372 # This is opposite to usual conventions but remains for\n\
00373 # historical reasons. The newer PointCloud2 message has no\n\
00374 # such problem.\n\
00375 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00376 # (R,G,B) values packed into the least significant 24 bits,\n\
00377 # in order.\n\
00378 # \"intensity\" - laser or pixel intensity.\n\
00379 # \"distance\"\n\
00380 \n\
00381 # The channel name should give semantics of the channel (e.g.\n\
00382 # \"intensity\" instead of \"value\").\n\
00383 string name\n\
00384 \n\
00385 # The values array should be 1-1 with the elements of the associated\n\
00386 # PointCloud.\n\
00387 float32[] values\n\
00388 \n\
00389 ================================================================================\n\
00390 MSG: object_manipulation_msgs/SceneRegion\n\
00391 # Point cloud\n\
00392 sensor_msgs/PointCloud2 cloud\n\
00393 \n\
00394 # Indices for the region of interest\n\
00395 int32[] mask\n\
00396 \n\
00397 # One of the corresponding 2D images, if applicable\n\
00398 sensor_msgs/Image image\n\
00399 \n\
00400 # The disparity image, if applicable\n\
00401 sensor_msgs/Image disparity_image\n\
00402 \n\
00403 # Camera info for the camera that took the image\n\
00404 sensor_msgs/CameraInfo cam_info\n\
00405 \n\
00406 # a 3D region of interest for grasp planning\n\
00407 geometry_msgs/PoseStamped roi_box_pose\n\
00408 geometry_msgs/Vector3 roi_box_dims\n\
00409 \n\
00410 ================================================================================\n\
00411 MSG: sensor_msgs/PointCloud2\n\
00412 # This message holds a collection of N-dimensional points, which may\n\
00413 # contain additional information such as normals, intensity, etc. The\n\
00414 # point data is stored as a binary blob, its layout described by the\n\
00415 # contents of the \"fields\" array.\n\
00416 \n\
00417 # The point cloud data may be organized 2d (image-like) or 1d\n\
00418 # (unordered). Point clouds organized as 2d images may be produced by\n\
00419 # camera depth sensors such as stereo or time-of-flight.\n\
00420 \n\
00421 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00422 # points).\n\
00423 Header header\n\
00424 \n\
00425 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00426 # 1 and width is the length of the point cloud.\n\
00427 uint32 height\n\
00428 uint32 width\n\
00429 \n\
00430 # Describes the channels and their layout in the binary data blob.\n\
00431 PointField[] fields\n\
00432 \n\
00433 bool is_bigendian # Is this data bigendian?\n\
00434 uint32 point_step # Length of a point in bytes\n\
00435 uint32 row_step # Length of a row in bytes\n\
00436 uint8[] data # Actual point data, size is (row_step*height)\n\
00437 \n\
00438 bool is_dense # True if there are no invalid points\n\
00439 \n\
00440 ================================================================================\n\
00441 MSG: sensor_msgs/PointField\n\
00442 # This message holds the description of one point entry in the\n\
00443 # PointCloud2 message format.\n\
00444 uint8 INT8 = 1\n\
00445 uint8 UINT8 = 2\n\
00446 uint8 INT16 = 3\n\
00447 uint8 UINT16 = 4\n\
00448 uint8 INT32 = 5\n\
00449 uint8 UINT32 = 6\n\
00450 uint8 FLOAT32 = 7\n\
00451 uint8 FLOAT64 = 8\n\
00452 \n\
00453 string name # Name of field\n\
00454 uint32 offset # Offset from start of point struct\n\
00455 uint8 datatype # Datatype enumeration, see above\n\
00456 uint32 count # How many elements in the field\n\
00457 \n\
00458 ================================================================================\n\
00459 MSG: sensor_msgs/Image\n\
00460 # This message contains an uncompressed image\n\
00461 # (0, 0) is at top-left corner of image\n\
00462 #\n\
00463 \n\
00464 Header header # Header timestamp should be acquisition time of image\n\
00465 # Header frame_id should be optical frame of camera\n\
00466 # origin of frame should be optical center of cameara\n\
00467 # +x should point to the right in the image\n\
00468 # +y should point down in the image\n\
00469 # +z should point into to plane of the image\n\
00470 # If the frame_id here and the frame_id of the CameraInfo\n\
00471 # message associated with the image conflict\n\
00472 # the behavior is undefined\n\
00473 \n\
00474 uint32 height # image height, that is, number of rows\n\
00475 uint32 width # image width, that is, number of columns\n\
00476 \n\
00477 # The legal values for encoding are in file src/image_encodings.cpp\n\
00478 # If you want to standardize a new string format, join\n\
00479 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00480 \n\
00481 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00482 # taken from the list of strings in src/image_encodings.cpp\n\
00483 \n\
00484 uint8 is_bigendian # is this data bigendian?\n\
00485 uint32 step # Full row length in bytes\n\
00486 uint8[] data # actual matrix data, size is (step * rows)\n\
00487 \n\
00488 ================================================================================\n\
00489 MSG: sensor_msgs/CameraInfo\n\
00490 # This message defines meta information for a camera. It should be in a\n\
00491 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00492 # image topics named:\n\
00493 #\n\
00494 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00495 # image - monochrome, distorted\n\
00496 # image_color - color, distorted\n\
00497 # image_rect - monochrome, rectified\n\
00498 # image_rect_color - color, rectified\n\
00499 #\n\
00500 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00501 # for producing the four processed image topics from image_raw and\n\
00502 # camera_info. The meaning of the camera parameters are described in\n\
00503 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00504 #\n\
00505 # The image_geometry package provides a user-friendly interface to\n\
00506 # common operations using this meta information. If you want to, e.g.,\n\
00507 # project a 3d point into image coordinates, we strongly recommend\n\
00508 # using image_geometry.\n\
00509 #\n\
00510 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00511 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00512 # indicates an uncalibrated camera.\n\
00513 \n\
00514 #######################################################################\n\
00515 # Image acquisition info #\n\
00516 #######################################################################\n\
00517 \n\
00518 # Time of image acquisition, camera coordinate frame ID\n\
00519 Header header # Header timestamp should be acquisition time of image\n\
00520 # Header frame_id should be optical frame of camera\n\
00521 # origin of frame should be optical center of camera\n\
00522 # +x should point to the right in the image\n\
00523 # +y should point down in the image\n\
00524 # +z should point into the plane of the image\n\
00525 \n\
00526 \n\
00527 #######################################################################\n\
00528 # Calibration Parameters #\n\
00529 #######################################################################\n\
00530 # These are fixed during camera calibration. Their values will be the #\n\
00531 # same in all messages until the camera is recalibrated. Note that #\n\
00532 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00533 # #\n\
00534 # The internal parameters can be used to warp a raw (distorted) image #\n\
00535 # to: #\n\
00536 # 1. An undistorted image (requires D and K) #\n\
00537 # 2. A rectified image (requires D, K, R) #\n\
00538 # The projection matrix P projects 3D points into the rectified image.#\n\
00539 #######################################################################\n\
00540 \n\
00541 # The image dimensions with which the camera was calibrated. Normally\n\
00542 # this will be the full camera resolution in pixels.\n\
00543 uint32 height\n\
00544 uint32 width\n\
00545 \n\
00546 # The distortion model used. Supported models are listed in\n\
00547 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00548 # simple model of radial and tangential distortion - is sufficent.\n\
00549 string distortion_model\n\
00550 \n\
00551 # The distortion parameters, size depending on the distortion model.\n\
00552 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00553 float64[] D\n\
00554 \n\
00555 # Intrinsic camera matrix for the raw (distorted) images.\n\
00556 # [fx 0 cx]\n\
00557 # K = [ 0 fy cy]\n\
00558 # [ 0 0 1]\n\
00559 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00560 # coordinates using the focal lengths (fx, fy) and principal point\n\
00561 # (cx, cy).\n\
00562 float64[9] K # 3x3 row-major matrix\n\
00563 \n\
00564 # Rectification matrix (stereo cameras only)\n\
00565 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00566 # stereo image plane so that epipolar lines in both stereo images are\n\
00567 # parallel.\n\
00568 float64[9] R # 3x3 row-major matrix\n\
00569 \n\
00570 # Projection/camera matrix\n\
00571 # [fx' 0 cx' Tx]\n\
00572 # P = [ 0 fy' cy' Ty]\n\
00573 # [ 0 0 1 0]\n\
00574 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00575 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00576 # is the normal camera intrinsic matrix for the rectified image.\n\
00577 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00578 # coordinates using the focal lengths (fx', fy') and principal point\n\
00579 # (cx', cy') - these may differ from the values in K.\n\
00580 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00581 # also have R = the identity and P[1:3,1:3] = K.\n\
00582 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00583 # position of the optical center of the second camera in the first\n\
00584 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00585 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00586 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00587 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00588 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00589 # the rectified image is given by:\n\
00590 # [u v w]' = P * [X Y Z 1]'\n\
00591 # x = u / w\n\
00592 # y = v / w\n\
00593 # This holds for both images of a stereo pair.\n\
00594 float64[12] P # 3x4 row-major matrix\n\
00595 \n\
00596 \n\
00597 #######################################################################\n\
00598 # Operational Parameters #\n\
00599 #######################################################################\n\
00600 # These define the image region actually captured by the camera #\n\
00601 # driver. Although they affect the geometry of the output image, they #\n\
00602 # may be changed freely without recalibrating the camera. #\n\
00603 #######################################################################\n\
00604 \n\
00605 # Binning refers here to any camera setting which combines rectangular\n\
00606 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00607 # resolution of the output image to\n\
00608 # (width / binning_x) x (height / binning_y).\n\
00609 # The default values binning_x = binning_y = 0 is considered the same\n\
00610 # as binning_x = binning_y = 1 (no subsampling).\n\
00611 uint32 binning_x\n\
00612 uint32 binning_y\n\
00613 \n\
00614 # Region of interest (subwindow of full camera resolution), given in\n\
00615 # full resolution (unbinned) image coordinates. A particular ROI\n\
00616 # always denotes the same window of pixels on the camera sensor,\n\
00617 # regardless of binning settings.\n\
00618 # The default setting of roi (all values 0) is considered the same as\n\
00619 # full resolution (roi.width = width, roi.height = height).\n\
00620 RegionOfInterest roi\n\
00621 \n\
00622 ================================================================================\n\
00623 MSG: sensor_msgs/RegionOfInterest\n\
00624 # This message is used to specify a region of interest within an image.\n\
00625 #\n\
00626 # When used to specify the ROI setting of the camera when the image was\n\
00627 # taken, the height and width fields should either match the height and\n\
00628 # width fields for the associated image; or height = width = 0\n\
00629 # indicates that the full resolution image was captured.\n\
00630 \n\
00631 uint32 x_offset # Leftmost pixel of the ROI\n\
00632 # (0 if the ROI includes the left edge of the image)\n\
00633 uint32 y_offset # Topmost pixel of the ROI\n\
00634 # (0 if the ROI includes the top edge of the image)\n\
00635 uint32 height # Height of ROI\n\
00636 uint32 width # Width of ROI\n\
00637 \n\
00638 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00639 # ROI in this message. Typically this should be False if the full image\n\
00640 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00641 # used).\n\
00642 bool do_rectify\n\
00643 \n\
00644 ================================================================================\n\
00645 MSG: geometry_msgs/Vector3\n\
00646 # This represents a vector in free space. \n\
00647 \n\
00648 float64 x\n\
00649 float64 y\n\
00650 float64 z\n\
00651 ================================================================================\n\
00652 MSG: object_manipulation_msgs/Grasp\n\
00653 \n\
00654 # The internal posture of the hand for the pre-grasp\n\
00655 # only positions are used\n\
00656 sensor_msgs/JointState pre_grasp_posture\n\
00657 \n\
00658 # The internal posture of the hand for the grasp\n\
00659 # positions and efforts are used\n\
00660 sensor_msgs/JointState grasp_posture\n\
00661 \n\
00662 # The position of the end-effector for the grasp relative to a reference frame \n\
00663 # (that is always specified elsewhere, not in this message)\n\
00664 geometry_msgs/Pose grasp_pose\n\
00665 \n\
00666 # The estimated probability of success for this grasp\n\
00667 float64 success_probability\n\
00668 \n\
00669 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00670 bool cluster_rep\n\
00671 \n\
00672 # how far the pre-grasp should ideally be away from the grasp\n\
00673 float32 desired_approach_distance\n\
00674 \n\
00675 # how much distance between pre-grasp and grasp must actually be feasible \n\
00676 # for the grasp not to be rejected\n\
00677 float32 min_approach_distance\n\
00678 \n\
00679 # an optional list of obstacles that we have semantic information about\n\
00680 # and that we expect might move in the course of executing this grasp\n\
00681 # the grasp planner is expected to make sure they move in an OK way; during\n\
00682 # execution, grasp executors will not check for collisions against these objects\n\
00683 GraspableObject[] moved_obstacles\n\
00684 \n\
00685 ================================================================================\n\
00686 MSG: sensor_msgs/JointState\n\
00687 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00688 #\n\
00689 # The state of each joint (revolute or prismatic) is defined by:\n\
00690 # * the position of the joint (rad or m),\n\
00691 # * the velocity of the joint (rad/s or m/s) and \n\
00692 # * the effort that is applied in the joint (Nm or N).\n\
00693 #\n\
00694 # Each joint is uniquely identified by its name\n\
00695 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00696 # in one message have to be recorded at the same time.\n\
00697 #\n\
00698 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00699 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00700 # effort associated with them, you can leave the effort array empty. \n\
00701 #\n\
00702 # All arrays in this message should have the same size, or be empty.\n\
00703 # This is the only way to uniquely associate the joint name with the correct\n\
00704 # states.\n\
00705 \n\
00706 \n\
00707 Header header\n\
00708 \n\
00709 string[] name\n\
00710 float64[] position\n\
00711 float64[] velocity\n\
00712 float64[] effort\n\
00713 \n\
00714 ================================================================================\n\
00715 MSG: object_manipulation_msgs/GripperTranslation\n\
00716 # defines a translation for the gripper, used in pickup or place tasks\n\
00717 # for example for lifting an object off a table or approaching the table for placing\n\
00718 \n\
00719 # the direction of the translation\n\
00720 geometry_msgs/Vector3Stamped direction\n\
00721 \n\
00722 # the desired translation distance\n\
00723 float32 desired_distance\n\
00724 \n\
00725 # the min distance that must be considered feasible before the\n\
00726 # grasp is even attempted\n\
00727 float32 min_distance\n\
00728 ================================================================================\n\
00729 MSG: geometry_msgs/Vector3Stamped\n\
00730 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00731 Header header\n\
00732 Vector3 vector\n\
00733 \n\
00734 ================================================================================\n\
00735 MSG: arm_navigation_msgs/Constraints\n\
00736 # This message contains a list of motion planning constraints.\n\
00737 \n\
00738 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00739 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00740 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00741 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00742 \n\
00743 ================================================================================\n\
00744 MSG: arm_navigation_msgs/JointConstraint\n\
00745 # Constrain the position of a joint to be within a certain bound\n\
00746 string joint_name\n\
00747 \n\
00748 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00749 float64 position\n\
00750 float64 tolerance_above\n\
00751 float64 tolerance_below\n\
00752 \n\
00753 # A weighting factor for this constraint\n\
00754 float64 weight\n\
00755 ================================================================================\n\
00756 MSG: arm_navigation_msgs/PositionConstraint\n\
00757 # This message contains the definition of a position constraint.\n\
00758 Header header\n\
00759 \n\
00760 # The robot link this constraint refers to\n\
00761 string link_name\n\
00762 \n\
00763 # The offset (in the link frame) for the target point on the link we are planning for\n\
00764 geometry_msgs/Point target_point_offset\n\
00765 \n\
00766 # The nominal/target position for the point we are planning for\n\
00767 geometry_msgs/Point position\n\
00768 \n\
00769 # The shape of the bounded region that constrains the position of the end-effector\n\
00770 # This region is always centered at the position defined above\n\
00771 arm_navigation_msgs/Shape constraint_region_shape\n\
00772 \n\
00773 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00774 # This allows the specification of non-axis aligned constraints\n\
00775 geometry_msgs/Quaternion constraint_region_orientation\n\
00776 \n\
00777 # Constraint weighting factor - a weight for this constraint\n\
00778 float64 weight\n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: arm_navigation_msgs/Shape\n\
00782 byte SPHERE=0\n\
00783 byte BOX=1\n\
00784 byte CYLINDER=2\n\
00785 byte MESH=3\n\
00786 \n\
00787 byte type\n\
00788 \n\
00789 \n\
00790 #### define sphere, box, cylinder ####\n\
00791 # the origin of each shape is considered at the shape's center\n\
00792 \n\
00793 # for sphere\n\
00794 # radius := dimensions[0]\n\
00795 \n\
00796 # for cylinder\n\
00797 # radius := dimensions[0]\n\
00798 # length := dimensions[1]\n\
00799 # the length is along the Z axis\n\
00800 \n\
00801 # for box\n\
00802 # size_x := dimensions[0]\n\
00803 # size_y := dimensions[1]\n\
00804 # size_z := dimensions[2]\n\
00805 float64[] dimensions\n\
00806 \n\
00807 \n\
00808 #### define mesh ####\n\
00809 \n\
00810 # list of triangles; triangle k is defined by tre vertices located\n\
00811 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00812 int32[] triangles\n\
00813 geometry_msgs/Point[] vertices\n\
00814 \n\
00815 ================================================================================\n\
00816 MSG: arm_navigation_msgs/OrientationConstraint\n\
00817 # This message contains the definition of an orientation constraint.\n\
00818 Header header\n\
00819 \n\
00820 # The robot link this constraint refers to\n\
00821 string link_name\n\
00822 \n\
00823 # The type of the constraint\n\
00824 int32 type\n\
00825 int32 LINK_FRAME=0\n\
00826 int32 HEADER_FRAME=1\n\
00827 \n\
00828 # The desired orientation of the robot link specified as a quaternion\n\
00829 geometry_msgs/Quaternion orientation\n\
00830 \n\
00831 # optional RPY error tolerances specified if \n\
00832 float64 absolute_roll_tolerance\n\
00833 float64 absolute_pitch_tolerance\n\
00834 float64 absolute_yaw_tolerance\n\
00835 \n\
00836 # Constraint weighting factor - a weight for this constraint\n\
00837 float64 weight\n\
00838 \n\
00839 ================================================================================\n\
00840 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00841 # This message contains the definition of a visibility constraint.\n\
00842 Header header\n\
00843 \n\
00844 # The point stamped target that needs to be kept within view of the sensor\n\
00845 geometry_msgs/PointStamped target\n\
00846 \n\
00847 # The local pose of the frame in which visibility is to be maintained\n\
00848 # The frame id should represent the robot link to which the sensor is attached\n\
00849 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00850 geometry_msgs/PoseStamped sensor_pose\n\
00851 \n\
00852 # The deviation (in radians) that will be tolerated\n\
00853 # Constraint error will be measured as the solid angle between the \n\
00854 # X axis of the frame defined above and the vector between the origin \n\
00855 # of the frame defined above and the target location\n\
00856 float64 absolute_tolerance\n\
00857 \n\
00858 \n\
00859 ================================================================================\n\
00860 MSG: geometry_msgs/PointStamped\n\
00861 # This represents a Point with reference coordinate frame and timestamp\n\
00862 Header header\n\
00863 Point point\n\
00864 \n\
00865 ================================================================================\n\
00866 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00867 # A set of collision operations that will be performed in the order they are specified\n\
00868 CollisionOperation[] collision_operations\n\
00869 ================================================================================\n\
00870 MSG: arm_navigation_msgs/CollisionOperation\n\
00871 # A definition of a collision operation\n\
00872 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00873 # between the gripper and all objects in the collision space\n\
00874 \n\
00875 string object1\n\
00876 string object2\n\
00877 string COLLISION_SET_ALL=\"all\"\n\
00878 string COLLISION_SET_OBJECTS=\"objects\"\n\
00879 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00880 \n\
00881 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00882 float64 penetration_distance\n\
00883 \n\
00884 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00885 int32 operation\n\
00886 int32 DISABLE=0\n\
00887 int32 ENABLE=1\n\
00888 \n\
00889 ================================================================================\n\
00890 MSG: arm_navigation_msgs/LinkPadding\n\
00891 #name for the link\n\
00892 string link_name\n\
00893 \n\
00894 # padding to apply to the link\n\
00895 float64 padding\n\
00896 \n\
00897 ";
00898 }
00899
00900 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00901 };
00902
00903 }
00904 }
00905
00906 namespace ros
00907 {
00908 namespace serialization
00909 {
00910
00911 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >
00912 {
00913 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00914 {
00915 stream.next(m.arm_name);
00916 stream.next(m.target);
00917 stream.next(m.desired_grasps);
00918 stream.next(m.lift);
00919 stream.next(m.collision_object_name);
00920 stream.next(m.collision_support_surface_name);
00921 stream.next(m.allow_gripper_support_collision);
00922 stream.next(m.use_reactive_execution);
00923 stream.next(m.use_reactive_lift);
00924 stream.next(m.only_perform_feasibility_test);
00925 stream.next(m.ignore_collisions);
00926 stream.next(m.path_constraints);
00927 stream.next(m.additional_collision_operations);
00928 stream.next(m.additional_link_padding);
00929 stream.next(m.movable_obstacles);
00930 stream.next(m.max_contact_force);
00931 }
00932
00933 ROS_DECLARE_ALLINONE_SERIALIZER;
00934 };
00935 }
00936 }
00937
00938 namespace ros
00939 {
00940 namespace message_operations
00941 {
00942
00943 template<class ContainerAllocator>
00944 struct Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >
00945 {
00946 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v)
00947 {
00948 s << indent << "arm_name: ";
00949 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
00950 s << indent << "target: ";
00951 s << std::endl;
00952 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
00953 s << indent << "desired_grasps[]" << std::endl;
00954 for (size_t i = 0; i < v.desired_grasps.size(); ++i)
00955 {
00956 s << indent << " desired_grasps[" << i << "]: ";
00957 s << std::endl;
00958 s << indent;
00959 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.desired_grasps[i]);
00960 }
00961 s << indent << "lift: ";
00962 s << std::endl;
00963 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift);
00964 s << indent << "collision_object_name: ";
00965 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name);
00966 s << indent << "collision_support_surface_name: ";
00967 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
00968 s << indent << "allow_gripper_support_collision: ";
00969 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision);
00970 s << indent << "use_reactive_execution: ";
00971 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_execution);
00972 s << indent << "use_reactive_lift: ";
00973 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_lift);
00974 s << indent << "only_perform_feasibility_test: ";
00975 Printer<uint8_t>::stream(s, indent + " ", v.only_perform_feasibility_test);
00976 s << indent << "ignore_collisions: ";
00977 Printer<uint8_t>::stream(s, indent + " ", v.ignore_collisions);
00978 s << indent << "path_constraints: ";
00979 s << std::endl;
00980 Printer< ::arm_navigation_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints);
00981 s << indent << "additional_collision_operations: ";
00982 s << std::endl;
00983 Printer< ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations);
00984 s << indent << "additional_link_padding[]" << std::endl;
00985 for (size_t i = 0; i < v.additional_link_padding.size(); ++i)
00986 {
00987 s << indent << " additional_link_padding[" << i << "]: ";
00988 s << std::endl;
00989 s << indent;
00990 Printer< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]);
00991 }
00992 s << indent << "movable_obstacles[]" << std::endl;
00993 for (size_t i = 0; i < v.movable_obstacles.size(); ++i)
00994 {
00995 s << indent << " movable_obstacles[" << i << "]: ";
00996 s << std::endl;
00997 s << indent;
00998 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.movable_obstacles[i]);
00999 }
01000 s << indent << "max_contact_force: ";
01001 Printer<float>::stream(s, indent + " ", v.max_contact_force);
01002 }
01003 };
01004
01005
01006 }
01007 }
01008
01009 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
01010