PickupActionResult.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/PickupActionResult.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalStatus.h"
00019 #include "object_manipulation_msgs/PickupResult.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupActionResult_ {
00025   typedef PickupActionResult_<ContainerAllocator> Type;
00026 
00027   PickupActionResult_()
00028   : header()
00029   , status()
00030   , result()
00031   {
00032   }
00033 
00034   PickupActionResult_(const ContainerAllocator& _alloc)
00035   : header(_alloc)
00036   , status(_alloc)
00037   , result(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00042    ::std_msgs::Header_<ContainerAllocator>  header;
00043 
00044   typedef  ::actionlib_msgs::GoalStatus_<ContainerAllocator>  _status_type;
00045    ::actionlib_msgs::GoalStatus_<ContainerAllocator>  status;
00046 
00047   typedef  ::object_manipulation_msgs::PickupResult_<ContainerAllocator>  _result_type;
00048    ::object_manipulation_msgs::PickupResult_<ContainerAllocator>  result;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct PickupActionResult
00055 typedef  ::object_manipulation_msgs::PickupActionResult_<std::allocator<void> > PickupActionResult;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult> PickupActionResultPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult const> PickupActionResultConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "35cc61e4783a89b01b3f4ece0f5f068c";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0x35cc61e4783a89b0ULL;
00084   static const uint64_t static_value2 = 0x1b3f4ece0f5f068cULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/PickupActionResult";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalStatus status\n\
00105 PickupResult result\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalStatus\n\
00127 GoalID goal_id\n\
00128 uint8 status\n\
00129 uint8 PENDING         = 0   # The goal has yet to be processed by the action server\n\
00130 uint8 ACTIVE          = 1   # The goal is currently being processed by the action server\n\
00131 uint8 PREEMPTED       = 2   # The goal received a cancel request after it started executing\n\
00132                             #   and has since completed its execution (Terminal State)\n\
00133 uint8 SUCCEEDED       = 3   # The goal was achieved successfully by the action server (Terminal State)\n\
00134 uint8 ABORTED         = 4   # The goal was aborted during execution by the action server due\n\
00135                             #    to some failure (Terminal State)\n\
00136 uint8 REJECTED        = 5   # The goal was rejected by the action server without being processed,\n\
00137                             #    because the goal was unattainable or invalid (Terminal State)\n\
00138 uint8 PREEMPTING      = 6   # The goal received a cancel request after it started executing\n\
00139                             #    and has not yet completed execution\n\
00140 uint8 RECALLING       = 7   # The goal received a cancel request before it started executing,\n\
00141                             #    but the action server has not yet confirmed that the goal is canceled\n\
00142 uint8 RECALLED        = 8   # The goal received a cancel request before it started executing\n\
00143                             #    and was successfully cancelled (Terminal State)\n\
00144 uint8 LOST            = 9   # An action client can determine that a goal is LOST. This should not be\n\
00145                             #    sent over the wire by an action server\n\
00146 \n\
00147 #Allow for the user to associate a string with GoalStatus for debugging\n\
00148 string text\n\
00149 \n\
00150 \n\
00151 ================================================================================\n\
00152 MSG: actionlib_msgs/GoalID\n\
00153 # The stamp should store the time at which this goal was requested.\n\
00154 # It is used by an action server when it tries to preempt all\n\
00155 # goals that were requested before a certain time\n\
00156 time stamp\n\
00157 \n\
00158 # The id provides a way to associate feedback and\n\
00159 # result message with specific goal requests. The id\n\
00160 # specified must be unique.\n\
00161 string id\n\
00162 \n\
00163 \n\
00164 ================================================================================\n\
00165 MSG: object_manipulation_msgs/PickupResult\n\
00166 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00167 \n\
00168 # The overall result of the pickup attempt\n\
00169 ManipulationResult manipulation_result\n\
00170 \n\
00171 # The performed grasp, if attempt was successful\n\
00172 Grasp grasp\n\
00173 \n\
00174 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00175 # the successful one should be the last one in this list\n\
00176 Grasp[] attempted_grasps\n\
00177 \n\
00178 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00179 GraspResult[] attempted_grasp_results\n\
00180 \n\
00181 \n\
00182 ================================================================================\n\
00183 MSG: object_manipulation_msgs/ManipulationResult\n\
00184 # Result codes for manipulation tasks\n\
00185 \n\
00186 # task completed as expected\n\
00187 # generally means you can proceed as planned\n\
00188 int32 SUCCESS = 1\n\
00189 \n\
00190 # task not possible (e.g. out of reach or obstacles in the way)\n\
00191 # generally means that the world was not disturbed, so you can try another task\n\
00192 int32 UNFEASIBLE = -1\n\
00193 \n\
00194 # task was thought possible, but failed due to unexpected events during execution\n\
00195 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00196 # your sensed world model before proceeding to another task\n\
00197 int32 FAILED = -2\n\
00198 \n\
00199 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00200 # generally requires human attention\n\
00201 int32 ERROR = -3\n\
00202 \n\
00203 # means that at some point during execution we ended up in a state that the collision-aware\n\
00204 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00205 # probably need a new collision map to move the arm out of the stuck position\n\
00206 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00207 \n\
00208 # specific to grasp actions\n\
00209 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00210 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00211 int32 LIFT_FAILED = -5\n\
00212 \n\
00213 # specific to place actions\n\
00214 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00215 # it is likely that the collision environment will see collisions between the hand and the object\n\
00216 int32 RETREAT_FAILED = -6\n\
00217 \n\
00218 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00219 int32 CANCELLED = -7\n\
00220 \n\
00221 # the actual value of this error code\n\
00222 int32 value\n\
00223 \n\
00224 ================================================================================\n\
00225 MSG: object_manipulation_msgs/Grasp\n\
00226 \n\
00227 # The internal posture of the hand for the pre-grasp\n\
00228 # only positions are used\n\
00229 sensor_msgs/JointState pre_grasp_posture\n\
00230 \n\
00231 # The internal posture of the hand for the grasp\n\
00232 # positions and efforts are used\n\
00233 sensor_msgs/JointState grasp_posture\n\
00234 \n\
00235 # The position of the end-effector for the grasp relative to a reference frame \n\
00236 # (that is always specified elsewhere, not in this message)\n\
00237 geometry_msgs/Pose grasp_pose\n\
00238 \n\
00239 # The estimated probability of success for this grasp\n\
00240 float64 success_probability\n\
00241 \n\
00242 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00243 bool cluster_rep\n\
00244 \n\
00245 # how far the pre-grasp should ideally be away from the grasp\n\
00246 float32 desired_approach_distance\n\
00247 \n\
00248 # how much distance between pre-grasp and grasp must actually be feasible \n\
00249 # for the grasp not to be rejected\n\
00250 float32 min_approach_distance\n\
00251 \n\
00252 # an optional list of obstacles that we have semantic information about\n\
00253 # and that we expect might move in the course of executing this grasp\n\
00254 # the grasp planner is expected to make sure they move in an OK way; during\n\
00255 # execution, grasp executors will not check for collisions against these objects\n\
00256 GraspableObject[] moved_obstacles\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: sensor_msgs/JointState\n\
00260 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00261 #\n\
00262 # The state of each joint (revolute or prismatic) is defined by:\n\
00263 #  * the position of the joint (rad or m),\n\
00264 #  * the velocity of the joint (rad/s or m/s) and \n\
00265 #  * the effort that is applied in the joint (Nm or N).\n\
00266 #\n\
00267 # Each joint is uniquely identified by its name\n\
00268 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00269 # in one message have to be recorded at the same time.\n\
00270 #\n\
00271 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00272 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00273 # effort associated with them, you can leave the effort array empty. \n\
00274 #\n\
00275 # All arrays in this message should have the same size, or be empty.\n\
00276 # This is the only way to uniquely associate the joint name with the correct\n\
00277 # states.\n\
00278 \n\
00279 \n\
00280 Header header\n\
00281 \n\
00282 string[] name\n\
00283 float64[] position\n\
00284 float64[] velocity\n\
00285 float64[] effort\n\
00286 \n\
00287 ================================================================================\n\
00288 MSG: geometry_msgs/Pose\n\
00289 # A representation of pose in free space, composed of postion and orientation. \n\
00290 Point position\n\
00291 Quaternion orientation\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: geometry_msgs/Point\n\
00295 # This contains the position of a point in free space\n\
00296 float64 x\n\
00297 float64 y\n\
00298 float64 z\n\
00299 \n\
00300 ================================================================================\n\
00301 MSG: geometry_msgs/Quaternion\n\
00302 # This represents an orientation in free space in quaternion form.\n\
00303 \n\
00304 float64 x\n\
00305 float64 y\n\
00306 float64 z\n\
00307 float64 w\n\
00308 \n\
00309 ================================================================================\n\
00310 MSG: object_manipulation_msgs/GraspableObject\n\
00311 # an object that the object_manipulator can work on\n\
00312 \n\
00313 # a graspable object can be represented in multiple ways. This message\n\
00314 # can contain all of them. Which one is actually used is up to the receiver\n\
00315 # of this message. When adding new representations, one must be careful that\n\
00316 # they have reasonable lightweight defaults indicating that that particular\n\
00317 # representation is not available.\n\
00318 \n\
00319 # the tf frame to be used as a reference frame when combining information from\n\
00320 # the different representations below\n\
00321 string reference_frame_id\n\
00322 \n\
00323 # potential recognition results from a database of models\n\
00324 # all poses are relative to the object reference pose\n\
00325 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00326 \n\
00327 # the point cloud itself\n\
00328 sensor_msgs/PointCloud cluster\n\
00329 \n\
00330 # a region of a PointCloud2 of interest\n\
00331 object_manipulation_msgs/SceneRegion region\n\
00332 \n\
00333 # the name that this object has in the collision environment\n\
00334 string collision_name\n\
00335 ================================================================================\n\
00336 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00337 # Informs that a specific model from the Model Database has been \n\
00338 # identified at a certain location\n\
00339 \n\
00340 # the database id of the model\n\
00341 int32 model_id\n\
00342 \n\
00343 # the pose that it can be found in\n\
00344 geometry_msgs/PoseStamped pose\n\
00345 \n\
00346 # a measure of the confidence level in this detection result\n\
00347 float32 confidence\n\
00348 \n\
00349 # the name of the object detector that generated this detection result\n\
00350 string detector_name\n\
00351 \n\
00352 ================================================================================\n\
00353 MSG: geometry_msgs/PoseStamped\n\
00354 # A Pose with reference coordinate frame and timestamp\n\
00355 Header header\n\
00356 Pose pose\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: sensor_msgs/PointCloud\n\
00360 # This message holds a collection of 3d points, plus optional additional\n\
00361 # information about each point.\n\
00362 \n\
00363 # Time of sensor data acquisition, coordinate frame ID.\n\
00364 Header header\n\
00365 \n\
00366 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00367 # in the frame given in the header.\n\
00368 geometry_msgs/Point32[] points\n\
00369 \n\
00370 # Each channel should have the same number of elements as points array,\n\
00371 # and the data in each channel should correspond 1:1 with each point.\n\
00372 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00373 ChannelFloat32[] channels\n\
00374 \n\
00375 ================================================================================\n\
00376 MSG: geometry_msgs/Point32\n\
00377 # This contains the position of a point in free space(with 32 bits of precision).\n\
00378 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00379 # \n\
00380 # This recommendation is to promote interoperability.  \n\
00381 #\n\
00382 # This message is designed to take up less space when sending\n\
00383 # lots of points at once, as in the case of a PointCloud.  \n\
00384 \n\
00385 float32 x\n\
00386 float32 y\n\
00387 float32 z\n\
00388 ================================================================================\n\
00389 MSG: sensor_msgs/ChannelFloat32\n\
00390 # This message is used by the PointCloud message to hold optional data\n\
00391 # associated with each point in the cloud. The length of the values\n\
00392 # array should be the same as the length of the points array in the\n\
00393 # PointCloud, and each value should be associated with the corresponding\n\
00394 # point.\n\
00395 \n\
00396 # Channel names in existing practice include:\n\
00397 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00398 #              This is opposite to usual conventions but remains for\n\
00399 #              historical reasons. The newer PointCloud2 message has no\n\
00400 #              such problem.\n\
00401 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00402 #           (R,G,B) values packed into the least significant 24 bits,\n\
00403 #           in order.\n\
00404 #   \"intensity\" - laser or pixel intensity.\n\
00405 #   \"distance\"\n\
00406 \n\
00407 # The channel name should give semantics of the channel (e.g.\n\
00408 # \"intensity\" instead of \"value\").\n\
00409 string name\n\
00410 \n\
00411 # The values array should be 1-1 with the elements of the associated\n\
00412 # PointCloud.\n\
00413 float32[] values\n\
00414 \n\
00415 ================================================================================\n\
00416 MSG: object_manipulation_msgs/SceneRegion\n\
00417 # Point cloud\n\
00418 sensor_msgs/PointCloud2 cloud\n\
00419 \n\
00420 # Indices for the region of interest\n\
00421 int32[] mask\n\
00422 \n\
00423 # One of the corresponding 2D images, if applicable\n\
00424 sensor_msgs/Image image\n\
00425 \n\
00426 # The disparity image, if applicable\n\
00427 sensor_msgs/Image disparity_image\n\
00428 \n\
00429 # Camera info for the camera that took the image\n\
00430 sensor_msgs/CameraInfo cam_info\n\
00431 \n\
00432 # a 3D region of interest for grasp planning\n\
00433 geometry_msgs/PoseStamped  roi_box_pose\n\
00434 geometry_msgs/Vector3      roi_box_dims\n\
00435 \n\
00436 ================================================================================\n\
00437 MSG: sensor_msgs/PointCloud2\n\
00438 # This message holds a collection of N-dimensional points, which may\n\
00439 # contain additional information such as normals, intensity, etc. The\n\
00440 # point data is stored as a binary blob, its layout described by the\n\
00441 # contents of the \"fields\" array.\n\
00442 \n\
00443 # The point cloud data may be organized 2d (image-like) or 1d\n\
00444 # (unordered). Point clouds organized as 2d images may be produced by\n\
00445 # camera depth sensors such as stereo or time-of-flight.\n\
00446 \n\
00447 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00448 # points).\n\
00449 Header header\n\
00450 \n\
00451 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00452 # 1 and width is the length of the point cloud.\n\
00453 uint32 height\n\
00454 uint32 width\n\
00455 \n\
00456 # Describes the channels and their layout in the binary data blob.\n\
00457 PointField[] fields\n\
00458 \n\
00459 bool    is_bigendian # Is this data bigendian?\n\
00460 uint32  point_step   # Length of a point in bytes\n\
00461 uint32  row_step     # Length of a row in bytes\n\
00462 uint8[] data         # Actual point data, size is (row_step*height)\n\
00463 \n\
00464 bool is_dense        # True if there are no invalid points\n\
00465 \n\
00466 ================================================================================\n\
00467 MSG: sensor_msgs/PointField\n\
00468 # This message holds the description of one point entry in the\n\
00469 # PointCloud2 message format.\n\
00470 uint8 INT8    = 1\n\
00471 uint8 UINT8   = 2\n\
00472 uint8 INT16   = 3\n\
00473 uint8 UINT16  = 4\n\
00474 uint8 INT32   = 5\n\
00475 uint8 UINT32  = 6\n\
00476 uint8 FLOAT32 = 7\n\
00477 uint8 FLOAT64 = 8\n\
00478 \n\
00479 string name      # Name of field\n\
00480 uint32 offset    # Offset from start of point struct\n\
00481 uint8  datatype  # Datatype enumeration, see above\n\
00482 uint32 count     # How many elements in the field\n\
00483 \n\
00484 ================================================================================\n\
00485 MSG: sensor_msgs/Image\n\
00486 # This message contains an uncompressed image\n\
00487 # (0, 0) is at top-left corner of image\n\
00488 #\n\
00489 \n\
00490 Header header        # Header timestamp should be acquisition time of image\n\
00491                      # Header frame_id should be optical frame of camera\n\
00492                      # origin of frame should be optical center of cameara\n\
00493                      # +x should point to the right in the image\n\
00494                      # +y should point down in the image\n\
00495                      # +z should point into to plane of the image\n\
00496                      # If the frame_id here and the frame_id of the CameraInfo\n\
00497                      # message associated with the image conflict\n\
00498                      # the behavior is undefined\n\
00499 \n\
00500 uint32 height         # image height, that is, number of rows\n\
00501 uint32 width          # image width, that is, number of columns\n\
00502 \n\
00503 # The legal values for encoding are in file src/image_encodings.cpp\n\
00504 # If you want to standardize a new string format, join\n\
00505 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00506 \n\
00507 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00508                       # taken from the list of strings in src/image_encodings.cpp\n\
00509 \n\
00510 uint8 is_bigendian    # is this data bigendian?\n\
00511 uint32 step           # Full row length in bytes\n\
00512 uint8[] data          # actual matrix data, size is (step * rows)\n\
00513 \n\
00514 ================================================================================\n\
00515 MSG: sensor_msgs/CameraInfo\n\
00516 # This message defines meta information for a camera. It should be in a\n\
00517 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00518 # image topics named:\n\
00519 #\n\
00520 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00521 #   image            - monochrome, distorted\n\
00522 #   image_color      - color, distorted\n\
00523 #   image_rect       - monochrome, rectified\n\
00524 #   image_rect_color - color, rectified\n\
00525 #\n\
00526 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00527 # for producing the four processed image topics from image_raw and\n\
00528 # camera_info. The meaning of the camera parameters are described in\n\
00529 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00530 #\n\
00531 # The image_geometry package provides a user-friendly interface to\n\
00532 # common operations using this meta information. If you want to, e.g.,\n\
00533 # project a 3d point into image coordinates, we strongly recommend\n\
00534 # using image_geometry.\n\
00535 #\n\
00536 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00537 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00538 # indicates an uncalibrated camera.\n\
00539 \n\
00540 #######################################################################\n\
00541 #                     Image acquisition info                          #\n\
00542 #######################################################################\n\
00543 \n\
00544 # Time of image acquisition, camera coordinate frame ID\n\
00545 Header header    # Header timestamp should be acquisition time of image\n\
00546                  # Header frame_id should be optical frame of camera\n\
00547                  # origin of frame should be optical center of camera\n\
00548                  # +x should point to the right in the image\n\
00549                  # +y should point down in the image\n\
00550                  # +z should point into the plane of the image\n\
00551 \n\
00552 \n\
00553 #######################################################################\n\
00554 #                      Calibration Parameters                         #\n\
00555 #######################################################################\n\
00556 # These are fixed during camera calibration. Their values will be the #\n\
00557 # same in all messages until the camera is recalibrated. Note that    #\n\
00558 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00559 #                                                                     #\n\
00560 # The internal parameters can be used to warp a raw (distorted) image #\n\
00561 # to:                                                                 #\n\
00562 #   1. An undistorted image (requires D and K)                        #\n\
00563 #   2. A rectified image (requires D, K, R)                           #\n\
00564 # The projection matrix P projects 3D points into the rectified image.#\n\
00565 #######################################################################\n\
00566 \n\
00567 # The image dimensions with which the camera was calibrated. Normally\n\
00568 # this will be the full camera resolution in pixels.\n\
00569 uint32 height\n\
00570 uint32 width\n\
00571 \n\
00572 # The distortion model used. Supported models are listed in\n\
00573 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00574 # simple model of radial and tangential distortion - is sufficent.\n\
00575 string distortion_model\n\
00576 \n\
00577 # The distortion parameters, size depending on the distortion model.\n\
00578 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00579 float64[] D\n\
00580 \n\
00581 # Intrinsic camera matrix for the raw (distorted) images.\n\
00582 #     [fx  0 cx]\n\
00583 # K = [ 0 fy cy]\n\
00584 #     [ 0  0  1]\n\
00585 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00586 # coordinates using the focal lengths (fx, fy) and principal point\n\
00587 # (cx, cy).\n\
00588 float64[9]  K # 3x3 row-major matrix\n\
00589 \n\
00590 # Rectification matrix (stereo cameras only)\n\
00591 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00592 # stereo image plane so that epipolar lines in both stereo images are\n\
00593 # parallel.\n\
00594 float64[9]  R # 3x3 row-major matrix\n\
00595 \n\
00596 # Projection/camera matrix\n\
00597 #     [fx'  0  cx' Tx]\n\
00598 # P = [ 0  fy' cy' Ty]\n\
00599 #     [ 0   0   1   0]\n\
00600 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00601 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00602 #  is the normal camera intrinsic matrix for the rectified image.\n\
00603 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00604 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00605 #  (cx', cy') - these may differ from the values in K.\n\
00606 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00607 #  also have R = the identity and P[1:3,1:3] = K.\n\
00608 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00609 #  position of the optical center of the second camera in the first\n\
00610 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00611 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00612 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00613 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00614 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00615 #  the rectified image is given by:\n\
00616 #  [u v w]' = P * [X Y Z 1]'\n\
00617 #         x = u / w\n\
00618 #         y = v / w\n\
00619 #  This holds for both images of a stereo pair.\n\
00620 float64[12] P # 3x4 row-major matrix\n\
00621 \n\
00622 \n\
00623 #######################################################################\n\
00624 #                      Operational Parameters                         #\n\
00625 #######################################################################\n\
00626 # These define the image region actually captured by the camera       #\n\
00627 # driver. Although they affect the geometry of the output image, they #\n\
00628 # may be changed freely without recalibrating the camera.             #\n\
00629 #######################################################################\n\
00630 \n\
00631 # Binning refers here to any camera setting which combines rectangular\n\
00632 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00633 #  resolution of the output image to\n\
00634 #  (width / binning_x) x (height / binning_y).\n\
00635 # The default values binning_x = binning_y = 0 is considered the same\n\
00636 #  as binning_x = binning_y = 1 (no subsampling).\n\
00637 uint32 binning_x\n\
00638 uint32 binning_y\n\
00639 \n\
00640 # Region of interest (subwindow of full camera resolution), given in\n\
00641 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00642 #  always denotes the same window of pixels on the camera sensor,\n\
00643 #  regardless of binning settings.\n\
00644 # The default setting of roi (all values 0) is considered the same as\n\
00645 #  full resolution (roi.width = width, roi.height = height).\n\
00646 RegionOfInterest roi\n\
00647 \n\
00648 ================================================================================\n\
00649 MSG: sensor_msgs/RegionOfInterest\n\
00650 # This message is used to specify a region of interest within an image.\n\
00651 #\n\
00652 # When used to specify the ROI setting of the camera when the image was\n\
00653 # taken, the height and width fields should either match the height and\n\
00654 # width fields for the associated image; or height = width = 0\n\
00655 # indicates that the full resolution image was captured.\n\
00656 \n\
00657 uint32 x_offset  # Leftmost pixel of the ROI\n\
00658                  # (0 if the ROI includes the left edge of the image)\n\
00659 uint32 y_offset  # Topmost pixel of the ROI\n\
00660                  # (0 if the ROI includes the top edge of the image)\n\
00661 uint32 height    # Height of ROI\n\
00662 uint32 width     # Width of ROI\n\
00663 \n\
00664 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00665 # ROI in this message. Typically this should be False if the full image\n\
00666 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00667 # used).\n\
00668 bool do_rectify\n\
00669 \n\
00670 ================================================================================\n\
00671 MSG: geometry_msgs/Vector3\n\
00672 # This represents a vector in free space. \n\
00673 \n\
00674 float64 x\n\
00675 float64 y\n\
00676 float64 z\n\
00677 ================================================================================\n\
00678 MSG: object_manipulation_msgs/GraspResult\n\
00679 int32 SUCCESS = 1\n\
00680 int32 GRASP_OUT_OF_REACH = 2\n\
00681 int32 GRASP_IN_COLLISION = 3\n\
00682 int32 GRASP_UNFEASIBLE = 4\n\
00683 int32 PREGRASP_OUT_OF_REACH = 5\n\
00684 int32 PREGRASP_IN_COLLISION = 6\n\
00685 int32 PREGRASP_UNFEASIBLE = 7\n\
00686 int32 LIFT_OUT_OF_REACH = 8\n\
00687 int32 LIFT_IN_COLLISION = 9\n\
00688 int32 LIFT_UNFEASIBLE = 10\n\
00689 int32 MOVE_ARM_FAILED = 11\n\
00690 int32 GRASP_FAILED = 12\n\
00691 int32 LIFT_FAILED = 13\n\
00692 int32 RETREAT_FAILED = 14\n\
00693 int32 result_code\n\
00694 \n\
00695 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
00696 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
00697 # before proceeding\n\
00698 bool continuation_possible\n\
00699 \n\
00700 ";
00701   }
00702 
00703   static const char* value(const  ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); } 
00704 };
00705 
00706 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {};
00707 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {};
00708 } // namespace message_traits
00709 } // namespace ros
00710 
00711 namespace ros
00712 {
00713 namespace serialization
00714 {
00715 
00716 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >
00717 {
00718   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00719   {
00720     stream.next(m.header);
00721     stream.next(m.status);
00722     stream.next(m.result);
00723   }
00724 
00725   ROS_DECLARE_ALLINONE_SERIALIZER;
00726 }; // struct PickupActionResult_
00727 } // namespace serialization
00728 } // namespace ros
00729 
00730 namespace ros
00731 {
00732 namespace message_operations
00733 {
00734 
00735 template<class ContainerAllocator>
00736 struct Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >
00737 {
00738   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> & v) 
00739   {
00740     s << indent << "header: ";
00741 s << std::endl;
00742     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00743     s << indent << "status: ";
00744 s << std::endl;
00745     Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + "  ", v.status);
00746     s << indent << "result: ";
00747 s << std::endl;
00748     Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >::stream(s, indent + "  ", v.result);
00749   }
00750 };
00751 
00752 
00753 } // namespace message_operations
00754 } // namespace ros
00755 
00756 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H
00757 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12