00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "household_objects_database_msgs/DatabaseModelPose.h"
00018 #include "sensor_msgs/PointCloud.h"
00019 #include "object_manipulation_msgs/SceneRegion.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspableObject_ {
00025 typedef GraspableObject_<ContainerAllocator> Type;
00026
00027 GraspableObject_()
00028 : reference_frame_id()
00029 , potential_models()
00030 , cluster()
00031 , region()
00032 , collision_name()
00033 {
00034 }
00035
00036 GraspableObject_(const ContainerAllocator& _alloc)
00037 : reference_frame_id(_alloc)
00038 , potential_models(_alloc)
00039 , cluster(_alloc)
00040 , region(_alloc)
00041 , collision_name(_alloc)
00042 {
00043 }
00044
00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _reference_frame_id_type;
00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > reference_frame_id;
00047
00048 typedef std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > _potential_models_type;
00049 std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > potential_models;
00050
00051 typedef ::sensor_msgs::PointCloud_<ContainerAllocator> _cluster_type;
00052 ::sensor_msgs::PointCloud_<ContainerAllocator> cluster;
00053
00054 typedef ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> _region_type;
00055 ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> region;
00056
00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_name_type;
00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_name;
00059
00060
00061 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > Ptr;
00062 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> ConstPtr;
00063 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00064 };
00065 typedef ::object_manipulation_msgs::GraspableObject_<std::allocator<void> > GraspableObject;
00066
00067 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject> GraspableObjectPtr;
00068 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject const> GraspableObjectConstPtr;
00069
00070
00071 template<typename ContainerAllocator>
00072 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v)
00073 {
00074 ros::message_operations::Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, "", v);
00075 return s;}
00076
00077 }
00078
00079 namespace ros
00080 {
00081 namespace message_traits
00082 {
00083 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > : public TrueType {};
00084 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> : public TrueType {};
00085 template<class ContainerAllocator>
00086 struct MD5Sum< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00087 static const char* value()
00088 {
00089 return "fb38ca9beebc9a80929b7a0397d84cf3";
00090 }
00091
00092 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00093 static const uint64_t static_value1 = 0xfb38ca9beebc9a80ULL;
00094 static const uint64_t static_value2 = 0x929b7a0397d84cf3ULL;
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct DataType< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "object_manipulation_msgs/GraspableObject";
00102 }
00103
00104 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00105 };
00106
00107 template<class ContainerAllocator>
00108 struct Definition< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00109 static const char* value()
00110 {
00111 return "# an object that the object_manipulator can work on\n\
00112 \n\
00113 # a graspable object can be represented in multiple ways. This message\n\
00114 # can contain all of them. Which one is actually used is up to the receiver\n\
00115 # of this message. When adding new representations, one must be careful that\n\
00116 # they have reasonable lightweight defaults indicating that that particular\n\
00117 # representation is not available.\n\
00118 \n\
00119 # the tf frame to be used as a reference frame when combining information from\n\
00120 # the different representations below\n\
00121 string reference_frame_id\n\
00122 \n\
00123 # potential recognition results from a database of models\n\
00124 # all poses are relative to the object reference pose\n\
00125 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00126 \n\
00127 # the point cloud itself\n\
00128 sensor_msgs/PointCloud cluster\n\
00129 \n\
00130 # a region of a PointCloud2 of interest\n\
00131 object_manipulation_msgs/SceneRegion region\n\
00132 \n\
00133 # the name that this object has in the collision environment\n\
00134 string collision_name\n\
00135 ================================================================================\n\
00136 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00137 # Informs that a specific model from the Model Database has been \n\
00138 # identified at a certain location\n\
00139 \n\
00140 # the database id of the model\n\
00141 int32 model_id\n\
00142 \n\
00143 # the pose that it can be found in\n\
00144 geometry_msgs/PoseStamped pose\n\
00145 \n\
00146 # a measure of the confidence level in this detection result\n\
00147 float32 confidence\n\
00148 \n\
00149 # the name of the object detector that generated this detection result\n\
00150 string detector_name\n\
00151 \n\
00152 ================================================================================\n\
00153 MSG: geometry_msgs/PoseStamped\n\
00154 # A Pose with reference coordinate frame and timestamp\n\
00155 Header header\n\
00156 Pose pose\n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: std_msgs/Header\n\
00160 # Standard metadata for higher-level stamped data types.\n\
00161 # This is generally used to communicate timestamped data \n\
00162 # in a particular coordinate frame.\n\
00163 # \n\
00164 # sequence ID: consecutively increasing ID \n\
00165 uint32 seq\n\
00166 #Two-integer timestamp that is expressed as:\n\
00167 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00168 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00169 # time-handling sugar is provided by the client library\n\
00170 time stamp\n\
00171 #Frame this data is associated with\n\
00172 # 0: no frame\n\
00173 # 1: global frame\n\
00174 string frame_id\n\
00175 \n\
00176 ================================================================================\n\
00177 MSG: geometry_msgs/Pose\n\
00178 # A representation of pose in free space, composed of postion and orientation. \n\
00179 Point position\n\
00180 Quaternion orientation\n\
00181 \n\
00182 ================================================================================\n\
00183 MSG: geometry_msgs/Point\n\
00184 # This contains the position of a point in free space\n\
00185 float64 x\n\
00186 float64 y\n\
00187 float64 z\n\
00188 \n\
00189 ================================================================================\n\
00190 MSG: geometry_msgs/Quaternion\n\
00191 # This represents an orientation in free space in quaternion form.\n\
00192 \n\
00193 float64 x\n\
00194 float64 y\n\
00195 float64 z\n\
00196 float64 w\n\
00197 \n\
00198 ================================================================================\n\
00199 MSG: sensor_msgs/PointCloud\n\
00200 # This message holds a collection of 3d points, plus optional additional\n\
00201 # information about each point.\n\
00202 \n\
00203 # Time of sensor data acquisition, coordinate frame ID.\n\
00204 Header header\n\
00205 \n\
00206 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00207 # in the frame given in the header.\n\
00208 geometry_msgs/Point32[] points\n\
00209 \n\
00210 # Each channel should have the same number of elements as points array,\n\
00211 # and the data in each channel should correspond 1:1 with each point.\n\
00212 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00213 ChannelFloat32[] channels\n\
00214 \n\
00215 ================================================================================\n\
00216 MSG: geometry_msgs/Point32\n\
00217 # This contains the position of a point in free space(with 32 bits of precision).\n\
00218 # It is recommeded to use Point wherever possible instead of Point32. \n\
00219 # \n\
00220 # This recommendation is to promote interoperability. \n\
00221 #\n\
00222 # This message is designed to take up less space when sending\n\
00223 # lots of points at once, as in the case of a PointCloud. \n\
00224 \n\
00225 float32 x\n\
00226 float32 y\n\
00227 float32 z\n\
00228 ================================================================================\n\
00229 MSG: sensor_msgs/ChannelFloat32\n\
00230 # This message is used by the PointCloud message to hold optional data\n\
00231 # associated with each point in the cloud. The length of the values\n\
00232 # array should be the same as the length of the points array in the\n\
00233 # PointCloud, and each value should be associated with the corresponding\n\
00234 # point.\n\
00235 \n\
00236 # Channel names in existing practice include:\n\
00237 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00238 # This is opposite to usual conventions but remains for\n\
00239 # historical reasons. The newer PointCloud2 message has no\n\
00240 # such problem.\n\
00241 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00242 # (R,G,B) values packed into the least significant 24 bits,\n\
00243 # in order.\n\
00244 # \"intensity\" - laser or pixel intensity.\n\
00245 # \"distance\"\n\
00246 \n\
00247 # The channel name should give semantics of the channel (e.g.\n\
00248 # \"intensity\" instead of \"value\").\n\
00249 string name\n\
00250 \n\
00251 # The values array should be 1-1 with the elements of the associated\n\
00252 # PointCloud.\n\
00253 float32[] values\n\
00254 \n\
00255 ================================================================================\n\
00256 MSG: object_manipulation_msgs/SceneRegion\n\
00257 # Point cloud\n\
00258 sensor_msgs/PointCloud2 cloud\n\
00259 \n\
00260 # Indices for the region of interest\n\
00261 int32[] mask\n\
00262 \n\
00263 # One of the corresponding 2D images, if applicable\n\
00264 sensor_msgs/Image image\n\
00265 \n\
00266 # The disparity image, if applicable\n\
00267 sensor_msgs/Image disparity_image\n\
00268 \n\
00269 # Camera info for the camera that took the image\n\
00270 sensor_msgs/CameraInfo cam_info\n\
00271 \n\
00272 # a 3D region of interest for grasp planning\n\
00273 geometry_msgs/PoseStamped roi_box_pose\n\
00274 geometry_msgs/Vector3 roi_box_dims\n\
00275 \n\
00276 ================================================================================\n\
00277 MSG: sensor_msgs/PointCloud2\n\
00278 # This message holds a collection of N-dimensional points, which may\n\
00279 # contain additional information such as normals, intensity, etc. The\n\
00280 # point data is stored as a binary blob, its layout described by the\n\
00281 # contents of the \"fields\" array.\n\
00282 \n\
00283 # The point cloud data may be organized 2d (image-like) or 1d\n\
00284 # (unordered). Point clouds organized as 2d images may be produced by\n\
00285 # camera depth sensors such as stereo or time-of-flight.\n\
00286 \n\
00287 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00288 # points).\n\
00289 Header header\n\
00290 \n\
00291 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00292 # 1 and width is the length of the point cloud.\n\
00293 uint32 height\n\
00294 uint32 width\n\
00295 \n\
00296 # Describes the channels and their layout in the binary data blob.\n\
00297 PointField[] fields\n\
00298 \n\
00299 bool is_bigendian # Is this data bigendian?\n\
00300 uint32 point_step # Length of a point in bytes\n\
00301 uint32 row_step # Length of a row in bytes\n\
00302 uint8[] data # Actual point data, size is (row_step*height)\n\
00303 \n\
00304 bool is_dense # True if there are no invalid points\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: sensor_msgs/PointField\n\
00308 # This message holds the description of one point entry in the\n\
00309 # PointCloud2 message format.\n\
00310 uint8 INT8 = 1\n\
00311 uint8 UINT8 = 2\n\
00312 uint8 INT16 = 3\n\
00313 uint8 UINT16 = 4\n\
00314 uint8 INT32 = 5\n\
00315 uint8 UINT32 = 6\n\
00316 uint8 FLOAT32 = 7\n\
00317 uint8 FLOAT64 = 8\n\
00318 \n\
00319 string name # Name of field\n\
00320 uint32 offset # Offset from start of point struct\n\
00321 uint8 datatype # Datatype enumeration, see above\n\
00322 uint32 count # How many elements in the field\n\
00323 \n\
00324 ================================================================================\n\
00325 MSG: sensor_msgs/Image\n\
00326 # This message contains an uncompressed image\n\
00327 # (0, 0) is at top-left corner of image\n\
00328 #\n\
00329 \n\
00330 Header header # Header timestamp should be acquisition time of image\n\
00331 # Header frame_id should be optical frame of camera\n\
00332 # origin of frame should be optical center of cameara\n\
00333 # +x should point to the right in the image\n\
00334 # +y should point down in the image\n\
00335 # +z should point into to plane of the image\n\
00336 # If the frame_id here and the frame_id of the CameraInfo\n\
00337 # message associated with the image conflict\n\
00338 # the behavior is undefined\n\
00339 \n\
00340 uint32 height # image height, that is, number of rows\n\
00341 uint32 width # image width, that is, number of columns\n\
00342 \n\
00343 # The legal values for encoding are in file src/image_encodings.cpp\n\
00344 # If you want to standardize a new string format, join\n\
00345 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00346 \n\
00347 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00348 # taken from the list of strings in src/image_encodings.cpp\n\
00349 \n\
00350 uint8 is_bigendian # is this data bigendian?\n\
00351 uint32 step # Full row length in bytes\n\
00352 uint8[] data # actual matrix data, size is (step * rows)\n\
00353 \n\
00354 ================================================================================\n\
00355 MSG: sensor_msgs/CameraInfo\n\
00356 # This message defines meta information for a camera. It should be in a\n\
00357 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00358 # image topics named:\n\
00359 #\n\
00360 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00361 # image - monochrome, distorted\n\
00362 # image_color - color, distorted\n\
00363 # image_rect - monochrome, rectified\n\
00364 # image_rect_color - color, rectified\n\
00365 #\n\
00366 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00367 # for producing the four processed image topics from image_raw and\n\
00368 # camera_info. The meaning of the camera parameters are described in\n\
00369 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00370 #\n\
00371 # The image_geometry package provides a user-friendly interface to\n\
00372 # common operations using this meta information. If you want to, e.g.,\n\
00373 # project a 3d point into image coordinates, we strongly recommend\n\
00374 # using image_geometry.\n\
00375 #\n\
00376 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00377 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00378 # indicates an uncalibrated camera.\n\
00379 \n\
00380 #######################################################################\n\
00381 # Image acquisition info #\n\
00382 #######################################################################\n\
00383 \n\
00384 # Time of image acquisition, camera coordinate frame ID\n\
00385 Header header # Header timestamp should be acquisition time of image\n\
00386 # Header frame_id should be optical frame of camera\n\
00387 # origin of frame should be optical center of camera\n\
00388 # +x should point to the right in the image\n\
00389 # +y should point down in the image\n\
00390 # +z should point into the plane of the image\n\
00391 \n\
00392 \n\
00393 #######################################################################\n\
00394 # Calibration Parameters #\n\
00395 #######################################################################\n\
00396 # These are fixed during camera calibration. Their values will be the #\n\
00397 # same in all messages until the camera is recalibrated. Note that #\n\
00398 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00399 # #\n\
00400 # The internal parameters can be used to warp a raw (distorted) image #\n\
00401 # to: #\n\
00402 # 1. An undistorted image (requires D and K) #\n\
00403 # 2. A rectified image (requires D, K, R) #\n\
00404 # The projection matrix P projects 3D points into the rectified image.#\n\
00405 #######################################################################\n\
00406 \n\
00407 # The image dimensions with which the camera was calibrated. Normally\n\
00408 # this will be the full camera resolution in pixels.\n\
00409 uint32 height\n\
00410 uint32 width\n\
00411 \n\
00412 # The distortion model used. Supported models are listed in\n\
00413 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00414 # simple model of radial and tangential distortion - is sufficent.\n\
00415 string distortion_model\n\
00416 \n\
00417 # The distortion parameters, size depending on the distortion model.\n\
00418 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00419 float64[] D\n\
00420 \n\
00421 # Intrinsic camera matrix for the raw (distorted) images.\n\
00422 # [fx 0 cx]\n\
00423 # K = [ 0 fy cy]\n\
00424 # [ 0 0 1]\n\
00425 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00426 # coordinates using the focal lengths (fx, fy) and principal point\n\
00427 # (cx, cy).\n\
00428 float64[9] K # 3x3 row-major matrix\n\
00429 \n\
00430 # Rectification matrix (stereo cameras only)\n\
00431 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00432 # stereo image plane so that epipolar lines in both stereo images are\n\
00433 # parallel.\n\
00434 float64[9] R # 3x3 row-major matrix\n\
00435 \n\
00436 # Projection/camera matrix\n\
00437 # [fx' 0 cx' Tx]\n\
00438 # P = [ 0 fy' cy' Ty]\n\
00439 # [ 0 0 1 0]\n\
00440 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00441 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00442 # is the normal camera intrinsic matrix for the rectified image.\n\
00443 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00444 # coordinates using the focal lengths (fx', fy') and principal point\n\
00445 # (cx', cy') - these may differ from the values in K.\n\
00446 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00447 # also have R = the identity and P[1:3,1:3] = K.\n\
00448 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00449 # position of the optical center of the second camera in the first\n\
00450 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00451 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00452 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00453 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00454 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00455 # the rectified image is given by:\n\
00456 # [u v w]' = P * [X Y Z 1]'\n\
00457 # x = u / w\n\
00458 # y = v / w\n\
00459 # This holds for both images of a stereo pair.\n\
00460 float64[12] P # 3x4 row-major matrix\n\
00461 \n\
00462 \n\
00463 #######################################################################\n\
00464 # Operational Parameters #\n\
00465 #######################################################################\n\
00466 # These define the image region actually captured by the camera #\n\
00467 # driver. Although they affect the geometry of the output image, they #\n\
00468 # may be changed freely without recalibrating the camera. #\n\
00469 #######################################################################\n\
00470 \n\
00471 # Binning refers here to any camera setting which combines rectangular\n\
00472 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00473 # resolution of the output image to\n\
00474 # (width / binning_x) x (height / binning_y).\n\
00475 # The default values binning_x = binning_y = 0 is considered the same\n\
00476 # as binning_x = binning_y = 1 (no subsampling).\n\
00477 uint32 binning_x\n\
00478 uint32 binning_y\n\
00479 \n\
00480 # Region of interest (subwindow of full camera resolution), given in\n\
00481 # full resolution (unbinned) image coordinates. A particular ROI\n\
00482 # always denotes the same window of pixels on the camera sensor,\n\
00483 # regardless of binning settings.\n\
00484 # The default setting of roi (all values 0) is considered the same as\n\
00485 # full resolution (roi.width = width, roi.height = height).\n\
00486 RegionOfInterest roi\n\
00487 \n\
00488 ================================================================================\n\
00489 MSG: sensor_msgs/RegionOfInterest\n\
00490 # This message is used to specify a region of interest within an image.\n\
00491 #\n\
00492 # When used to specify the ROI setting of the camera when the image was\n\
00493 # taken, the height and width fields should either match the height and\n\
00494 # width fields for the associated image; or height = width = 0\n\
00495 # indicates that the full resolution image was captured.\n\
00496 \n\
00497 uint32 x_offset # Leftmost pixel of the ROI\n\
00498 # (0 if the ROI includes the left edge of the image)\n\
00499 uint32 y_offset # Topmost pixel of the ROI\n\
00500 # (0 if the ROI includes the top edge of the image)\n\
00501 uint32 height # Height of ROI\n\
00502 uint32 width # Width of ROI\n\
00503 \n\
00504 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00505 # ROI in this message. Typically this should be False if the full image\n\
00506 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00507 # used).\n\
00508 bool do_rectify\n\
00509 \n\
00510 ================================================================================\n\
00511 MSG: geometry_msgs/Vector3\n\
00512 # This represents a vector in free space. \n\
00513 \n\
00514 float64 x\n\
00515 float64 y\n\
00516 float64 z\n\
00517 ";
00518 }
00519
00520 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00521 };
00522
00523 }
00524 }
00525
00526 namespace ros
00527 {
00528 namespace serialization
00529 {
00530
00531 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >
00532 {
00533 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00534 {
00535 stream.next(m.reference_frame_id);
00536 stream.next(m.potential_models);
00537 stream.next(m.cluster);
00538 stream.next(m.region);
00539 stream.next(m.collision_name);
00540 }
00541
00542 ROS_DECLARE_ALLINONE_SERIALIZER;
00543 };
00544 }
00545 }
00546
00547 namespace ros
00548 {
00549 namespace message_operations
00550 {
00551
00552 template<class ContainerAllocator>
00553 struct Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >
00554 {
00555 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v)
00556 {
00557 s << indent << "reference_frame_id: ";
00558 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.reference_frame_id);
00559 s << indent << "potential_models[]" << std::endl;
00560 for (size_t i = 0; i < v.potential_models.size(); ++i)
00561 {
00562 s << indent << " potential_models[" << i << "]: ";
00563 s << std::endl;
00564 s << indent;
00565 Printer< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::stream(s, indent + " ", v.potential_models[i]);
00566 }
00567 s << indent << "cluster: ";
00568 s << std::endl;
00569 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.cluster);
00570 s << indent << "region: ";
00571 s << std::endl;
00572 Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, indent + " ", v.region);
00573 s << indent << "collision_name: ";
00574 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_name);
00575 }
00576 };
00577
00578
00579 }
00580 }
00581
00582 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00583