00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "sensor_msgs/JointState.h"
00018 #include "sensor_msgs/JointState.h"
00019 #include "geometry_msgs/Pose.h"
00020 #include "object_manipulation_msgs/GraspableObject.h"
00021
00022 namespace object_manipulation_msgs
00023 {
00024 template <class ContainerAllocator>
00025 struct Grasp_ {
00026 typedef Grasp_<ContainerAllocator> Type;
00027
00028 Grasp_()
00029 : pre_grasp_posture()
00030 , grasp_posture()
00031 , grasp_pose()
00032 , success_probability(0.0)
00033 , cluster_rep(false)
00034 , desired_approach_distance(0.0)
00035 , min_approach_distance(0.0)
00036 , moved_obstacles()
00037 {
00038 }
00039
00040 Grasp_(const ContainerAllocator& _alloc)
00041 : pre_grasp_posture(_alloc)
00042 , grasp_posture(_alloc)
00043 , grasp_pose(_alloc)
00044 , success_probability(0.0)
00045 , cluster_rep(false)
00046 , desired_approach_distance(0.0)
00047 , min_approach_distance(0.0)
00048 , moved_obstacles(_alloc)
00049 {
00050 }
00051
00052 typedef ::sensor_msgs::JointState_<ContainerAllocator> _pre_grasp_posture_type;
00053 ::sensor_msgs::JointState_<ContainerAllocator> pre_grasp_posture;
00054
00055 typedef ::sensor_msgs::JointState_<ContainerAllocator> _grasp_posture_type;
00056 ::sensor_msgs::JointState_<ContainerAllocator> grasp_posture;
00057
00058 typedef ::geometry_msgs::Pose_<ContainerAllocator> _grasp_pose_type;
00059 ::geometry_msgs::Pose_<ContainerAllocator> grasp_pose;
00060
00061 typedef double _success_probability_type;
00062 double success_probability;
00063
00064 typedef uint8_t _cluster_rep_type;
00065 uint8_t cluster_rep;
00066
00067 typedef float _desired_approach_distance_type;
00068 float desired_approach_distance;
00069
00070 typedef float _min_approach_distance_type;
00071 float min_approach_distance;
00072
00073 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _moved_obstacles_type;
00074 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > moved_obstacles;
00075
00076
00077 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > Ptr;
00078 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp_<ContainerAllocator> const> ConstPtr;
00079 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00080 };
00081 typedef ::object_manipulation_msgs::Grasp_<std::allocator<void> > Grasp;
00082
00083 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp> GraspPtr;
00084 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp const> GraspConstPtr;
00085
00086
00087 template<typename ContainerAllocator>
00088 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::Grasp_<ContainerAllocator> & v)
00089 {
00090 ros::message_operations::Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, "", v);
00091 return s;}
00092
00093 }
00094
00095 namespace ros
00096 {
00097 namespace message_traits
00098 {
00099 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > : public TrueType {};
00100 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::Grasp_<ContainerAllocator> const> : public TrueType {};
00101 template<class ContainerAllocator>
00102 struct MD5Sum< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > {
00103 static const char* value()
00104 {
00105 return "4e72917bb6dbc7207581a7124a26ba32";
00106 }
00107
00108 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); }
00109 static const uint64_t static_value1 = 0x4e72917bb6dbc720ULL;
00110 static const uint64_t static_value2 = 0x7581a7124a26ba32ULL;
00111 };
00112
00113 template<class ContainerAllocator>
00114 struct DataType< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > {
00115 static const char* value()
00116 {
00117 return "object_manipulation_msgs/Grasp";
00118 }
00119
00120 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); }
00121 };
00122
00123 template<class ContainerAllocator>
00124 struct Definition< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > {
00125 static const char* value()
00126 {
00127 return "\n\
00128 # The internal posture of the hand for the pre-grasp\n\
00129 # only positions are used\n\
00130 sensor_msgs/JointState pre_grasp_posture\n\
00131 \n\
00132 # The internal posture of the hand for the grasp\n\
00133 # positions and efforts are used\n\
00134 sensor_msgs/JointState grasp_posture\n\
00135 \n\
00136 # The position of the end-effector for the grasp relative to a reference frame \n\
00137 # (that is always specified elsewhere, not in this message)\n\
00138 geometry_msgs/Pose grasp_pose\n\
00139 \n\
00140 # The estimated probability of success for this grasp\n\
00141 float64 success_probability\n\
00142 \n\
00143 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00144 bool cluster_rep\n\
00145 \n\
00146 # how far the pre-grasp should ideally be away from the grasp\n\
00147 float32 desired_approach_distance\n\
00148 \n\
00149 # how much distance between pre-grasp and grasp must actually be feasible \n\
00150 # for the grasp not to be rejected\n\
00151 float32 min_approach_distance\n\
00152 \n\
00153 # an optional list of obstacles that we have semantic information about\n\
00154 # and that we expect might move in the course of executing this grasp\n\
00155 # the grasp planner is expected to make sure they move in an OK way; during\n\
00156 # execution, grasp executors will not check for collisions against these objects\n\
00157 GraspableObject[] moved_obstacles\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: sensor_msgs/JointState\n\
00161 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00162 #\n\
00163 # The state of each joint (revolute or prismatic) is defined by:\n\
00164 # * the position of the joint (rad or m),\n\
00165 # * the velocity of the joint (rad/s or m/s) and \n\
00166 # * the effort that is applied in the joint (Nm or N).\n\
00167 #\n\
00168 # Each joint is uniquely identified by its name\n\
00169 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00170 # in one message have to be recorded at the same time.\n\
00171 #\n\
00172 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00173 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00174 # effort associated with them, you can leave the effort array empty. \n\
00175 #\n\
00176 # All arrays in this message should have the same size, or be empty.\n\
00177 # This is the only way to uniquely associate the joint name with the correct\n\
00178 # states.\n\
00179 \n\
00180 \n\
00181 Header header\n\
00182 \n\
00183 string[] name\n\
00184 float64[] position\n\
00185 float64[] velocity\n\
00186 float64[] effort\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: std_msgs/Header\n\
00190 # Standard metadata for higher-level stamped data types.\n\
00191 # This is generally used to communicate timestamped data \n\
00192 # in a particular coordinate frame.\n\
00193 # \n\
00194 # sequence ID: consecutively increasing ID \n\
00195 uint32 seq\n\
00196 #Two-integer timestamp that is expressed as:\n\
00197 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00198 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00199 # time-handling sugar is provided by the client library\n\
00200 time stamp\n\
00201 #Frame this data is associated with\n\
00202 # 0: no frame\n\
00203 # 1: global frame\n\
00204 string frame_id\n\
00205 \n\
00206 ================================================================================\n\
00207 MSG: geometry_msgs/Pose\n\
00208 # A representation of pose in free space, composed of postion and orientation. \n\
00209 Point position\n\
00210 Quaternion orientation\n\
00211 \n\
00212 ================================================================================\n\
00213 MSG: geometry_msgs/Point\n\
00214 # This contains the position of a point in free space\n\
00215 float64 x\n\
00216 float64 y\n\
00217 float64 z\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: geometry_msgs/Quaternion\n\
00221 # This represents an orientation in free space in quaternion form.\n\
00222 \n\
00223 float64 x\n\
00224 float64 y\n\
00225 float64 z\n\
00226 float64 w\n\
00227 \n\
00228 ================================================================================\n\
00229 MSG: object_manipulation_msgs/GraspableObject\n\
00230 # an object that the object_manipulator can work on\n\
00231 \n\
00232 # a graspable object can be represented in multiple ways. This message\n\
00233 # can contain all of them. Which one is actually used is up to the receiver\n\
00234 # of this message. When adding new representations, one must be careful that\n\
00235 # they have reasonable lightweight defaults indicating that that particular\n\
00236 # representation is not available.\n\
00237 \n\
00238 # the tf frame to be used as a reference frame when combining information from\n\
00239 # the different representations below\n\
00240 string reference_frame_id\n\
00241 \n\
00242 # potential recognition results from a database of models\n\
00243 # all poses are relative to the object reference pose\n\
00244 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00245 \n\
00246 # the point cloud itself\n\
00247 sensor_msgs/PointCloud cluster\n\
00248 \n\
00249 # a region of a PointCloud2 of interest\n\
00250 object_manipulation_msgs/SceneRegion region\n\
00251 \n\
00252 # the name that this object has in the collision environment\n\
00253 string collision_name\n\
00254 ================================================================================\n\
00255 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00256 # Informs that a specific model from the Model Database has been \n\
00257 # identified at a certain location\n\
00258 \n\
00259 # the database id of the model\n\
00260 int32 model_id\n\
00261 \n\
00262 # the pose that it can be found in\n\
00263 geometry_msgs/PoseStamped pose\n\
00264 \n\
00265 # a measure of the confidence level in this detection result\n\
00266 float32 confidence\n\
00267 \n\
00268 # the name of the object detector that generated this detection result\n\
00269 string detector_name\n\
00270 \n\
00271 ================================================================================\n\
00272 MSG: geometry_msgs/PoseStamped\n\
00273 # A Pose with reference coordinate frame and timestamp\n\
00274 Header header\n\
00275 Pose pose\n\
00276 \n\
00277 ================================================================================\n\
00278 MSG: sensor_msgs/PointCloud\n\
00279 # This message holds a collection of 3d points, plus optional additional\n\
00280 # information about each point.\n\
00281 \n\
00282 # Time of sensor data acquisition, coordinate frame ID.\n\
00283 Header header\n\
00284 \n\
00285 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00286 # in the frame given in the header.\n\
00287 geometry_msgs/Point32[] points\n\
00288 \n\
00289 # Each channel should have the same number of elements as points array,\n\
00290 # and the data in each channel should correspond 1:1 with each point.\n\
00291 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00292 ChannelFloat32[] channels\n\
00293 \n\
00294 ================================================================================\n\
00295 MSG: geometry_msgs/Point32\n\
00296 # This contains the position of a point in free space(with 32 bits of precision).\n\
00297 # It is recommeded to use Point wherever possible instead of Point32. \n\
00298 # \n\
00299 # This recommendation is to promote interoperability. \n\
00300 #\n\
00301 # This message is designed to take up less space when sending\n\
00302 # lots of points at once, as in the case of a PointCloud. \n\
00303 \n\
00304 float32 x\n\
00305 float32 y\n\
00306 float32 z\n\
00307 ================================================================================\n\
00308 MSG: sensor_msgs/ChannelFloat32\n\
00309 # This message is used by the PointCloud message to hold optional data\n\
00310 # associated with each point in the cloud. The length of the values\n\
00311 # array should be the same as the length of the points array in the\n\
00312 # PointCloud, and each value should be associated with the corresponding\n\
00313 # point.\n\
00314 \n\
00315 # Channel names in existing practice include:\n\
00316 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00317 # This is opposite to usual conventions but remains for\n\
00318 # historical reasons. The newer PointCloud2 message has no\n\
00319 # such problem.\n\
00320 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00321 # (R,G,B) values packed into the least significant 24 bits,\n\
00322 # in order.\n\
00323 # \"intensity\" - laser or pixel intensity.\n\
00324 # \"distance\"\n\
00325 \n\
00326 # The channel name should give semantics of the channel (e.g.\n\
00327 # \"intensity\" instead of \"value\").\n\
00328 string name\n\
00329 \n\
00330 # The values array should be 1-1 with the elements of the associated\n\
00331 # PointCloud.\n\
00332 float32[] values\n\
00333 \n\
00334 ================================================================================\n\
00335 MSG: object_manipulation_msgs/SceneRegion\n\
00336 # Point cloud\n\
00337 sensor_msgs/PointCloud2 cloud\n\
00338 \n\
00339 # Indices for the region of interest\n\
00340 int32[] mask\n\
00341 \n\
00342 # One of the corresponding 2D images, if applicable\n\
00343 sensor_msgs/Image image\n\
00344 \n\
00345 # The disparity image, if applicable\n\
00346 sensor_msgs/Image disparity_image\n\
00347 \n\
00348 # Camera info for the camera that took the image\n\
00349 sensor_msgs/CameraInfo cam_info\n\
00350 \n\
00351 # a 3D region of interest for grasp planning\n\
00352 geometry_msgs/PoseStamped roi_box_pose\n\
00353 geometry_msgs/Vector3 roi_box_dims\n\
00354 \n\
00355 ================================================================================\n\
00356 MSG: sensor_msgs/PointCloud2\n\
00357 # This message holds a collection of N-dimensional points, which may\n\
00358 # contain additional information such as normals, intensity, etc. The\n\
00359 # point data is stored as a binary blob, its layout described by the\n\
00360 # contents of the \"fields\" array.\n\
00361 \n\
00362 # The point cloud data may be organized 2d (image-like) or 1d\n\
00363 # (unordered). Point clouds organized as 2d images may be produced by\n\
00364 # camera depth sensors such as stereo or time-of-flight.\n\
00365 \n\
00366 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00367 # points).\n\
00368 Header header\n\
00369 \n\
00370 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00371 # 1 and width is the length of the point cloud.\n\
00372 uint32 height\n\
00373 uint32 width\n\
00374 \n\
00375 # Describes the channels and their layout in the binary data blob.\n\
00376 PointField[] fields\n\
00377 \n\
00378 bool is_bigendian # Is this data bigendian?\n\
00379 uint32 point_step # Length of a point in bytes\n\
00380 uint32 row_step # Length of a row in bytes\n\
00381 uint8[] data # Actual point data, size is (row_step*height)\n\
00382 \n\
00383 bool is_dense # True if there are no invalid points\n\
00384 \n\
00385 ================================================================================\n\
00386 MSG: sensor_msgs/PointField\n\
00387 # This message holds the description of one point entry in the\n\
00388 # PointCloud2 message format.\n\
00389 uint8 INT8 = 1\n\
00390 uint8 UINT8 = 2\n\
00391 uint8 INT16 = 3\n\
00392 uint8 UINT16 = 4\n\
00393 uint8 INT32 = 5\n\
00394 uint8 UINT32 = 6\n\
00395 uint8 FLOAT32 = 7\n\
00396 uint8 FLOAT64 = 8\n\
00397 \n\
00398 string name # Name of field\n\
00399 uint32 offset # Offset from start of point struct\n\
00400 uint8 datatype # Datatype enumeration, see above\n\
00401 uint32 count # How many elements in the field\n\
00402 \n\
00403 ================================================================================\n\
00404 MSG: sensor_msgs/Image\n\
00405 # This message contains an uncompressed image\n\
00406 # (0, 0) is at top-left corner of image\n\
00407 #\n\
00408 \n\
00409 Header header # Header timestamp should be acquisition time of image\n\
00410 # Header frame_id should be optical frame of camera\n\
00411 # origin of frame should be optical center of cameara\n\
00412 # +x should point to the right in the image\n\
00413 # +y should point down in the image\n\
00414 # +z should point into to plane of the image\n\
00415 # If the frame_id here and the frame_id of the CameraInfo\n\
00416 # message associated with the image conflict\n\
00417 # the behavior is undefined\n\
00418 \n\
00419 uint32 height # image height, that is, number of rows\n\
00420 uint32 width # image width, that is, number of columns\n\
00421 \n\
00422 # The legal values for encoding are in file src/image_encodings.cpp\n\
00423 # If you want to standardize a new string format, join\n\
00424 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00425 \n\
00426 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00427 # taken from the list of strings in src/image_encodings.cpp\n\
00428 \n\
00429 uint8 is_bigendian # is this data bigendian?\n\
00430 uint32 step # Full row length in bytes\n\
00431 uint8[] data # actual matrix data, size is (step * rows)\n\
00432 \n\
00433 ================================================================================\n\
00434 MSG: sensor_msgs/CameraInfo\n\
00435 # This message defines meta information for a camera. It should be in a\n\
00436 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00437 # image topics named:\n\
00438 #\n\
00439 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00440 # image - monochrome, distorted\n\
00441 # image_color - color, distorted\n\
00442 # image_rect - monochrome, rectified\n\
00443 # image_rect_color - color, rectified\n\
00444 #\n\
00445 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00446 # for producing the four processed image topics from image_raw and\n\
00447 # camera_info. The meaning of the camera parameters are described in\n\
00448 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00449 #\n\
00450 # The image_geometry package provides a user-friendly interface to\n\
00451 # common operations using this meta information. If you want to, e.g.,\n\
00452 # project a 3d point into image coordinates, we strongly recommend\n\
00453 # using image_geometry.\n\
00454 #\n\
00455 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00456 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00457 # indicates an uncalibrated camera.\n\
00458 \n\
00459 #######################################################################\n\
00460 # Image acquisition info #\n\
00461 #######################################################################\n\
00462 \n\
00463 # Time of image acquisition, camera coordinate frame ID\n\
00464 Header header # Header timestamp should be acquisition time of image\n\
00465 # Header frame_id should be optical frame of camera\n\
00466 # origin of frame should be optical center of camera\n\
00467 # +x should point to the right in the image\n\
00468 # +y should point down in the image\n\
00469 # +z should point into the plane of the image\n\
00470 \n\
00471 \n\
00472 #######################################################################\n\
00473 # Calibration Parameters #\n\
00474 #######################################################################\n\
00475 # These are fixed during camera calibration. Their values will be the #\n\
00476 # same in all messages until the camera is recalibrated. Note that #\n\
00477 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00478 # #\n\
00479 # The internal parameters can be used to warp a raw (distorted) image #\n\
00480 # to: #\n\
00481 # 1. An undistorted image (requires D and K) #\n\
00482 # 2. A rectified image (requires D, K, R) #\n\
00483 # The projection matrix P projects 3D points into the rectified image.#\n\
00484 #######################################################################\n\
00485 \n\
00486 # The image dimensions with which the camera was calibrated. Normally\n\
00487 # this will be the full camera resolution in pixels.\n\
00488 uint32 height\n\
00489 uint32 width\n\
00490 \n\
00491 # The distortion model used. Supported models are listed in\n\
00492 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00493 # simple model of radial and tangential distortion - is sufficent.\n\
00494 string distortion_model\n\
00495 \n\
00496 # The distortion parameters, size depending on the distortion model.\n\
00497 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00498 float64[] D\n\
00499 \n\
00500 # Intrinsic camera matrix for the raw (distorted) images.\n\
00501 # [fx 0 cx]\n\
00502 # K = [ 0 fy cy]\n\
00503 # [ 0 0 1]\n\
00504 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00505 # coordinates using the focal lengths (fx, fy) and principal point\n\
00506 # (cx, cy).\n\
00507 float64[9] K # 3x3 row-major matrix\n\
00508 \n\
00509 # Rectification matrix (stereo cameras only)\n\
00510 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00511 # stereo image plane so that epipolar lines in both stereo images are\n\
00512 # parallel.\n\
00513 float64[9] R # 3x3 row-major matrix\n\
00514 \n\
00515 # Projection/camera matrix\n\
00516 # [fx' 0 cx' Tx]\n\
00517 # P = [ 0 fy' cy' Ty]\n\
00518 # [ 0 0 1 0]\n\
00519 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00520 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00521 # is the normal camera intrinsic matrix for the rectified image.\n\
00522 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00523 # coordinates using the focal lengths (fx', fy') and principal point\n\
00524 # (cx', cy') - these may differ from the values in K.\n\
00525 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00526 # also have R = the identity and P[1:3,1:3] = K.\n\
00527 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00528 # position of the optical center of the second camera in the first\n\
00529 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00530 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00531 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00532 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00533 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00534 # the rectified image is given by:\n\
00535 # [u v w]' = P * [X Y Z 1]'\n\
00536 # x = u / w\n\
00537 # y = v / w\n\
00538 # This holds for both images of a stereo pair.\n\
00539 float64[12] P # 3x4 row-major matrix\n\
00540 \n\
00541 \n\
00542 #######################################################################\n\
00543 # Operational Parameters #\n\
00544 #######################################################################\n\
00545 # These define the image region actually captured by the camera #\n\
00546 # driver. Although they affect the geometry of the output image, they #\n\
00547 # may be changed freely without recalibrating the camera. #\n\
00548 #######################################################################\n\
00549 \n\
00550 # Binning refers here to any camera setting which combines rectangular\n\
00551 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00552 # resolution of the output image to\n\
00553 # (width / binning_x) x (height / binning_y).\n\
00554 # The default values binning_x = binning_y = 0 is considered the same\n\
00555 # as binning_x = binning_y = 1 (no subsampling).\n\
00556 uint32 binning_x\n\
00557 uint32 binning_y\n\
00558 \n\
00559 # Region of interest (subwindow of full camera resolution), given in\n\
00560 # full resolution (unbinned) image coordinates. A particular ROI\n\
00561 # always denotes the same window of pixels on the camera sensor,\n\
00562 # regardless of binning settings.\n\
00563 # The default setting of roi (all values 0) is considered the same as\n\
00564 # full resolution (roi.width = width, roi.height = height).\n\
00565 RegionOfInterest roi\n\
00566 \n\
00567 ================================================================================\n\
00568 MSG: sensor_msgs/RegionOfInterest\n\
00569 # This message is used to specify a region of interest within an image.\n\
00570 #\n\
00571 # When used to specify the ROI setting of the camera when the image was\n\
00572 # taken, the height and width fields should either match the height and\n\
00573 # width fields for the associated image; or height = width = 0\n\
00574 # indicates that the full resolution image was captured.\n\
00575 \n\
00576 uint32 x_offset # Leftmost pixel of the ROI\n\
00577 # (0 if the ROI includes the left edge of the image)\n\
00578 uint32 y_offset # Topmost pixel of the ROI\n\
00579 # (0 if the ROI includes the top edge of the image)\n\
00580 uint32 height # Height of ROI\n\
00581 uint32 width # Width of ROI\n\
00582 \n\
00583 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00584 # ROI in this message. Typically this should be False if the full image\n\
00585 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00586 # used).\n\
00587 bool do_rectify\n\
00588 \n\
00589 ================================================================================\n\
00590 MSG: geometry_msgs/Vector3\n\
00591 # This represents a vector in free space. \n\
00592 \n\
00593 float64 x\n\
00594 float64 y\n\
00595 float64 z\n\
00596 ";
00597 }
00598
00599 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); }
00600 };
00601
00602 }
00603 }
00604
00605 namespace ros
00606 {
00607 namespace serialization
00608 {
00609
00610 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >
00611 {
00612 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00613 {
00614 stream.next(m.pre_grasp_posture);
00615 stream.next(m.grasp_posture);
00616 stream.next(m.grasp_pose);
00617 stream.next(m.success_probability);
00618 stream.next(m.cluster_rep);
00619 stream.next(m.desired_approach_distance);
00620 stream.next(m.min_approach_distance);
00621 stream.next(m.moved_obstacles);
00622 }
00623
00624 ROS_DECLARE_ALLINONE_SERIALIZER;
00625 };
00626 }
00627 }
00628
00629 namespace ros
00630 {
00631 namespace message_operations
00632 {
00633
00634 template<class ContainerAllocator>
00635 struct Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >
00636 {
00637 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::Grasp_<ContainerAllocator> & v)
00638 {
00639 s << indent << "pre_grasp_posture: ";
00640 s << std::endl;
00641 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.pre_grasp_posture);
00642 s << indent << "grasp_posture: ";
00643 s << std::endl;
00644 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_posture);
00645 s << indent << "grasp_pose: ";
00646 s << std::endl;
00647 Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_pose);
00648 s << indent << "success_probability: ";
00649 Printer<double>::stream(s, indent + " ", v.success_probability);
00650 s << indent << "cluster_rep: ";
00651 Printer<uint8_t>::stream(s, indent + " ", v.cluster_rep);
00652 s << indent << "desired_approach_distance: ";
00653 Printer<float>::stream(s, indent + " ", v.desired_approach_distance);
00654 s << indent << "min_approach_distance: ";
00655 Printer<float>::stream(s, indent + " ", v.min_approach_distance);
00656 s << indent << "moved_obstacles[]" << std::endl;
00657 for (size_t i = 0; i < v.moved_obstacles.size(); ++i)
00658 {
00659 s << indent << " moved_obstacles[" << i << "]: ";
00660 s << std::endl;
00661 s << indent;
00662 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.moved_obstacles[i]);
00663 }
00664 }
00665 };
00666
00667
00668 }
00669 }
00670
00671 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H
00672