00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGFEEDBACK_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGFEEDBACK_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/Grasp.h"
00018
00019 namespace object_manipulation_msgs
00020 {
00021 template <class ContainerAllocator>
00022 struct GraspPlanningFeedback_ {
00023 typedef GraspPlanningFeedback_<ContainerAllocator> Type;
00024
00025 GraspPlanningFeedback_()
00026 : grasps()
00027 {
00028 }
00029
00030 GraspPlanningFeedback_(const ContainerAllocator& _alloc)
00031 : grasps(_alloc)
00032 {
00033 }
00034
00035 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_type;
00036 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps;
00037
00038
00039 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > Ptr;
00040 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> const> ConstPtr;
00041 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00042 };
00043 typedef ::object_manipulation_msgs::GraspPlanningFeedback_<std::allocator<void> > GraspPlanningFeedback;
00044
00045 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback> GraspPlanningFeedbackPtr;
00046 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback const> GraspPlanningFeedbackConstPtr;
00047
00048
00049 template<typename ContainerAllocator>
00050 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> & v)
00051 {
00052 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> >::stream(s, "", v);
00053 return s;}
00054
00055 }
00056
00057 namespace ros
00058 {
00059 namespace message_traits
00060 {
00061 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > : public TrueType {};
00062 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> const> : public TrueType {};
00063 template<class ContainerAllocator>
00064 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > {
00065 static const char* value()
00066 {
00067 return "7545a4f0b7d645678d5ba66709912a4b";
00068 }
00069
00070 static const char* value(const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> &) { return value(); }
00071 static const uint64_t static_value1 = 0x7545a4f0b7d64567ULL;
00072 static const uint64_t static_value2 = 0x8d5ba66709912a4bULL;
00073 };
00074
00075 template<class ContainerAllocator>
00076 struct DataType< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "object_manipulation_msgs/GraspPlanningFeedback";
00080 }
00081
00082 static const char* value(const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> &) { return value(); }
00083 };
00084
00085 template<class ContainerAllocator>
00086 struct Definition< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > {
00087 static const char* value()
00088 {
00089 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00090 \n\
00091 # grasps planned so far\n\
00092 Grasp[] grasps\n\
00093 \n\
00094 \n\
00095 \n\
00096 ================================================================================\n\
00097 MSG: object_manipulation_msgs/Grasp\n\
00098 \n\
00099 # The internal posture of the hand for the pre-grasp\n\
00100 # only positions are used\n\
00101 sensor_msgs/JointState pre_grasp_posture\n\
00102 \n\
00103 # The internal posture of the hand for the grasp\n\
00104 # positions and efforts are used\n\
00105 sensor_msgs/JointState grasp_posture\n\
00106 \n\
00107 # The position of the end-effector for the grasp relative to a reference frame \n\
00108 # (that is always specified elsewhere, not in this message)\n\
00109 geometry_msgs/Pose grasp_pose\n\
00110 \n\
00111 # The estimated probability of success for this grasp\n\
00112 float64 success_probability\n\
00113 \n\
00114 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00115 bool cluster_rep\n\
00116 \n\
00117 # how far the pre-grasp should ideally be away from the grasp\n\
00118 float32 desired_approach_distance\n\
00119 \n\
00120 # how much distance between pre-grasp and grasp must actually be feasible \n\
00121 # for the grasp not to be rejected\n\
00122 float32 min_approach_distance\n\
00123 \n\
00124 # an optional list of obstacles that we have semantic information about\n\
00125 # and that we expect might move in the course of executing this grasp\n\
00126 # the grasp planner is expected to make sure they move in an OK way; during\n\
00127 # execution, grasp executors will not check for collisions against these objects\n\
00128 GraspableObject[] moved_obstacles\n\
00129 \n\
00130 ================================================================================\n\
00131 MSG: sensor_msgs/JointState\n\
00132 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00133 #\n\
00134 # The state of each joint (revolute or prismatic) is defined by:\n\
00135 # * the position of the joint (rad or m),\n\
00136 # * the velocity of the joint (rad/s or m/s) and \n\
00137 # * the effort that is applied in the joint (Nm or N).\n\
00138 #\n\
00139 # Each joint is uniquely identified by its name\n\
00140 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00141 # in one message have to be recorded at the same time.\n\
00142 #\n\
00143 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00144 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00145 # effort associated with them, you can leave the effort array empty. \n\
00146 #\n\
00147 # All arrays in this message should have the same size, or be empty.\n\
00148 # This is the only way to uniquely associate the joint name with the correct\n\
00149 # states.\n\
00150 \n\
00151 \n\
00152 Header header\n\
00153 \n\
00154 string[] name\n\
00155 float64[] position\n\
00156 float64[] velocity\n\
00157 float64[] effort\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: std_msgs/Header\n\
00161 # Standard metadata for higher-level stamped data types.\n\
00162 # This is generally used to communicate timestamped data \n\
00163 # in a particular coordinate frame.\n\
00164 # \n\
00165 # sequence ID: consecutively increasing ID \n\
00166 uint32 seq\n\
00167 #Two-integer timestamp that is expressed as:\n\
00168 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00169 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00170 # time-handling sugar is provided by the client library\n\
00171 time stamp\n\
00172 #Frame this data is associated with\n\
00173 # 0: no frame\n\
00174 # 1: global frame\n\
00175 string frame_id\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: geometry_msgs/Pose\n\
00179 # A representation of pose in free space, composed of postion and orientation. \n\
00180 Point position\n\
00181 Quaternion orientation\n\
00182 \n\
00183 ================================================================================\n\
00184 MSG: geometry_msgs/Point\n\
00185 # This contains the position of a point in free space\n\
00186 float64 x\n\
00187 float64 y\n\
00188 float64 z\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: geometry_msgs/Quaternion\n\
00192 # This represents an orientation in free space in quaternion form.\n\
00193 \n\
00194 float64 x\n\
00195 float64 y\n\
00196 float64 z\n\
00197 float64 w\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: object_manipulation_msgs/GraspableObject\n\
00201 # an object that the object_manipulator can work on\n\
00202 \n\
00203 # a graspable object can be represented in multiple ways. This message\n\
00204 # can contain all of them. Which one is actually used is up to the receiver\n\
00205 # of this message. When adding new representations, one must be careful that\n\
00206 # they have reasonable lightweight defaults indicating that that particular\n\
00207 # representation is not available.\n\
00208 \n\
00209 # the tf frame to be used as a reference frame when combining information from\n\
00210 # the different representations below\n\
00211 string reference_frame_id\n\
00212 \n\
00213 # potential recognition results from a database of models\n\
00214 # all poses are relative to the object reference pose\n\
00215 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00216 \n\
00217 # the point cloud itself\n\
00218 sensor_msgs/PointCloud cluster\n\
00219 \n\
00220 # a region of a PointCloud2 of interest\n\
00221 object_manipulation_msgs/SceneRegion region\n\
00222 \n\
00223 # the name that this object has in the collision environment\n\
00224 string collision_name\n\
00225 ================================================================================\n\
00226 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00227 # Informs that a specific model from the Model Database has been \n\
00228 # identified at a certain location\n\
00229 \n\
00230 # the database id of the model\n\
00231 int32 model_id\n\
00232 \n\
00233 # the pose that it can be found in\n\
00234 geometry_msgs/PoseStamped pose\n\
00235 \n\
00236 # a measure of the confidence level in this detection result\n\
00237 float32 confidence\n\
00238 \n\
00239 # the name of the object detector that generated this detection result\n\
00240 string detector_name\n\
00241 \n\
00242 ================================================================================\n\
00243 MSG: geometry_msgs/PoseStamped\n\
00244 # A Pose with reference coordinate frame and timestamp\n\
00245 Header header\n\
00246 Pose pose\n\
00247 \n\
00248 ================================================================================\n\
00249 MSG: sensor_msgs/PointCloud\n\
00250 # This message holds a collection of 3d points, plus optional additional\n\
00251 # information about each point.\n\
00252 \n\
00253 # Time of sensor data acquisition, coordinate frame ID.\n\
00254 Header header\n\
00255 \n\
00256 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00257 # in the frame given in the header.\n\
00258 geometry_msgs/Point32[] points\n\
00259 \n\
00260 # Each channel should have the same number of elements as points array,\n\
00261 # and the data in each channel should correspond 1:1 with each point.\n\
00262 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00263 ChannelFloat32[] channels\n\
00264 \n\
00265 ================================================================================\n\
00266 MSG: geometry_msgs/Point32\n\
00267 # This contains the position of a point in free space(with 32 bits of precision).\n\
00268 # It is recommeded to use Point wherever possible instead of Point32. \n\
00269 # \n\
00270 # This recommendation is to promote interoperability. \n\
00271 #\n\
00272 # This message is designed to take up less space when sending\n\
00273 # lots of points at once, as in the case of a PointCloud. \n\
00274 \n\
00275 float32 x\n\
00276 float32 y\n\
00277 float32 z\n\
00278 ================================================================================\n\
00279 MSG: sensor_msgs/ChannelFloat32\n\
00280 # This message is used by the PointCloud message to hold optional data\n\
00281 # associated with each point in the cloud. The length of the values\n\
00282 # array should be the same as the length of the points array in the\n\
00283 # PointCloud, and each value should be associated with the corresponding\n\
00284 # point.\n\
00285 \n\
00286 # Channel names in existing practice include:\n\
00287 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00288 # This is opposite to usual conventions but remains for\n\
00289 # historical reasons. The newer PointCloud2 message has no\n\
00290 # such problem.\n\
00291 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00292 # (R,G,B) values packed into the least significant 24 bits,\n\
00293 # in order.\n\
00294 # \"intensity\" - laser or pixel intensity.\n\
00295 # \"distance\"\n\
00296 \n\
00297 # The channel name should give semantics of the channel (e.g.\n\
00298 # \"intensity\" instead of \"value\").\n\
00299 string name\n\
00300 \n\
00301 # The values array should be 1-1 with the elements of the associated\n\
00302 # PointCloud.\n\
00303 float32[] values\n\
00304 \n\
00305 ================================================================================\n\
00306 MSG: object_manipulation_msgs/SceneRegion\n\
00307 # Point cloud\n\
00308 sensor_msgs/PointCloud2 cloud\n\
00309 \n\
00310 # Indices for the region of interest\n\
00311 int32[] mask\n\
00312 \n\
00313 # One of the corresponding 2D images, if applicable\n\
00314 sensor_msgs/Image image\n\
00315 \n\
00316 # The disparity image, if applicable\n\
00317 sensor_msgs/Image disparity_image\n\
00318 \n\
00319 # Camera info for the camera that took the image\n\
00320 sensor_msgs/CameraInfo cam_info\n\
00321 \n\
00322 # a 3D region of interest for grasp planning\n\
00323 geometry_msgs/PoseStamped roi_box_pose\n\
00324 geometry_msgs/Vector3 roi_box_dims\n\
00325 \n\
00326 ================================================================================\n\
00327 MSG: sensor_msgs/PointCloud2\n\
00328 # This message holds a collection of N-dimensional points, which may\n\
00329 # contain additional information such as normals, intensity, etc. The\n\
00330 # point data is stored as a binary blob, its layout described by the\n\
00331 # contents of the \"fields\" array.\n\
00332 \n\
00333 # The point cloud data may be organized 2d (image-like) or 1d\n\
00334 # (unordered). Point clouds organized as 2d images may be produced by\n\
00335 # camera depth sensors such as stereo or time-of-flight.\n\
00336 \n\
00337 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00338 # points).\n\
00339 Header header\n\
00340 \n\
00341 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00342 # 1 and width is the length of the point cloud.\n\
00343 uint32 height\n\
00344 uint32 width\n\
00345 \n\
00346 # Describes the channels and their layout in the binary data blob.\n\
00347 PointField[] fields\n\
00348 \n\
00349 bool is_bigendian # Is this data bigendian?\n\
00350 uint32 point_step # Length of a point in bytes\n\
00351 uint32 row_step # Length of a row in bytes\n\
00352 uint8[] data # Actual point data, size is (row_step*height)\n\
00353 \n\
00354 bool is_dense # True if there are no invalid points\n\
00355 \n\
00356 ================================================================================\n\
00357 MSG: sensor_msgs/PointField\n\
00358 # This message holds the description of one point entry in the\n\
00359 # PointCloud2 message format.\n\
00360 uint8 INT8 = 1\n\
00361 uint8 UINT8 = 2\n\
00362 uint8 INT16 = 3\n\
00363 uint8 UINT16 = 4\n\
00364 uint8 INT32 = 5\n\
00365 uint8 UINT32 = 6\n\
00366 uint8 FLOAT32 = 7\n\
00367 uint8 FLOAT64 = 8\n\
00368 \n\
00369 string name # Name of field\n\
00370 uint32 offset # Offset from start of point struct\n\
00371 uint8 datatype # Datatype enumeration, see above\n\
00372 uint32 count # How many elements in the field\n\
00373 \n\
00374 ================================================================================\n\
00375 MSG: sensor_msgs/Image\n\
00376 # This message contains an uncompressed image\n\
00377 # (0, 0) is at top-left corner of image\n\
00378 #\n\
00379 \n\
00380 Header header # Header timestamp should be acquisition time of image\n\
00381 # Header frame_id should be optical frame of camera\n\
00382 # origin of frame should be optical center of cameara\n\
00383 # +x should point to the right in the image\n\
00384 # +y should point down in the image\n\
00385 # +z should point into to plane of the image\n\
00386 # If the frame_id here and the frame_id of the CameraInfo\n\
00387 # message associated with the image conflict\n\
00388 # the behavior is undefined\n\
00389 \n\
00390 uint32 height # image height, that is, number of rows\n\
00391 uint32 width # image width, that is, number of columns\n\
00392 \n\
00393 # The legal values for encoding are in file src/image_encodings.cpp\n\
00394 # If you want to standardize a new string format, join\n\
00395 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00396 \n\
00397 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00398 # taken from the list of strings in src/image_encodings.cpp\n\
00399 \n\
00400 uint8 is_bigendian # is this data bigendian?\n\
00401 uint32 step # Full row length in bytes\n\
00402 uint8[] data # actual matrix data, size is (step * rows)\n\
00403 \n\
00404 ================================================================================\n\
00405 MSG: sensor_msgs/CameraInfo\n\
00406 # This message defines meta information for a camera. It should be in a\n\
00407 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00408 # image topics named:\n\
00409 #\n\
00410 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00411 # image - monochrome, distorted\n\
00412 # image_color - color, distorted\n\
00413 # image_rect - monochrome, rectified\n\
00414 # image_rect_color - color, rectified\n\
00415 #\n\
00416 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00417 # for producing the four processed image topics from image_raw and\n\
00418 # camera_info. The meaning of the camera parameters are described in\n\
00419 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00420 #\n\
00421 # The image_geometry package provides a user-friendly interface to\n\
00422 # common operations using this meta information. If you want to, e.g.,\n\
00423 # project a 3d point into image coordinates, we strongly recommend\n\
00424 # using image_geometry.\n\
00425 #\n\
00426 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00427 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00428 # indicates an uncalibrated camera.\n\
00429 \n\
00430 #######################################################################\n\
00431 # Image acquisition info #\n\
00432 #######################################################################\n\
00433 \n\
00434 # Time of image acquisition, camera coordinate frame ID\n\
00435 Header header # Header timestamp should be acquisition time of image\n\
00436 # Header frame_id should be optical frame of camera\n\
00437 # origin of frame should be optical center of camera\n\
00438 # +x should point to the right in the image\n\
00439 # +y should point down in the image\n\
00440 # +z should point into the plane of the image\n\
00441 \n\
00442 \n\
00443 #######################################################################\n\
00444 # Calibration Parameters #\n\
00445 #######################################################################\n\
00446 # These are fixed during camera calibration. Their values will be the #\n\
00447 # same in all messages until the camera is recalibrated. Note that #\n\
00448 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00449 # #\n\
00450 # The internal parameters can be used to warp a raw (distorted) image #\n\
00451 # to: #\n\
00452 # 1. An undistorted image (requires D and K) #\n\
00453 # 2. A rectified image (requires D, K, R) #\n\
00454 # The projection matrix P projects 3D points into the rectified image.#\n\
00455 #######################################################################\n\
00456 \n\
00457 # The image dimensions with which the camera was calibrated. Normally\n\
00458 # this will be the full camera resolution in pixels.\n\
00459 uint32 height\n\
00460 uint32 width\n\
00461 \n\
00462 # The distortion model used. Supported models are listed in\n\
00463 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00464 # simple model of radial and tangential distortion - is sufficent.\n\
00465 string distortion_model\n\
00466 \n\
00467 # The distortion parameters, size depending on the distortion model.\n\
00468 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00469 float64[] D\n\
00470 \n\
00471 # Intrinsic camera matrix for the raw (distorted) images.\n\
00472 # [fx 0 cx]\n\
00473 # K = [ 0 fy cy]\n\
00474 # [ 0 0 1]\n\
00475 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00476 # coordinates using the focal lengths (fx, fy) and principal point\n\
00477 # (cx, cy).\n\
00478 float64[9] K # 3x3 row-major matrix\n\
00479 \n\
00480 # Rectification matrix (stereo cameras only)\n\
00481 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00482 # stereo image plane so that epipolar lines in both stereo images are\n\
00483 # parallel.\n\
00484 float64[9] R # 3x3 row-major matrix\n\
00485 \n\
00486 # Projection/camera matrix\n\
00487 # [fx' 0 cx' Tx]\n\
00488 # P = [ 0 fy' cy' Ty]\n\
00489 # [ 0 0 1 0]\n\
00490 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00491 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00492 # is the normal camera intrinsic matrix for the rectified image.\n\
00493 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00494 # coordinates using the focal lengths (fx', fy') and principal point\n\
00495 # (cx', cy') - these may differ from the values in K.\n\
00496 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00497 # also have R = the identity and P[1:3,1:3] = K.\n\
00498 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00499 # position of the optical center of the second camera in the first\n\
00500 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00501 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00502 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00503 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00504 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00505 # the rectified image is given by:\n\
00506 # [u v w]' = P * [X Y Z 1]'\n\
00507 # x = u / w\n\
00508 # y = v / w\n\
00509 # This holds for both images of a stereo pair.\n\
00510 float64[12] P # 3x4 row-major matrix\n\
00511 \n\
00512 \n\
00513 #######################################################################\n\
00514 # Operational Parameters #\n\
00515 #######################################################################\n\
00516 # These define the image region actually captured by the camera #\n\
00517 # driver. Although they affect the geometry of the output image, they #\n\
00518 # may be changed freely without recalibrating the camera. #\n\
00519 #######################################################################\n\
00520 \n\
00521 # Binning refers here to any camera setting which combines rectangular\n\
00522 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00523 # resolution of the output image to\n\
00524 # (width / binning_x) x (height / binning_y).\n\
00525 # The default values binning_x = binning_y = 0 is considered the same\n\
00526 # as binning_x = binning_y = 1 (no subsampling).\n\
00527 uint32 binning_x\n\
00528 uint32 binning_y\n\
00529 \n\
00530 # Region of interest (subwindow of full camera resolution), given in\n\
00531 # full resolution (unbinned) image coordinates. A particular ROI\n\
00532 # always denotes the same window of pixels on the camera sensor,\n\
00533 # regardless of binning settings.\n\
00534 # The default setting of roi (all values 0) is considered the same as\n\
00535 # full resolution (roi.width = width, roi.height = height).\n\
00536 RegionOfInterest roi\n\
00537 \n\
00538 ================================================================================\n\
00539 MSG: sensor_msgs/RegionOfInterest\n\
00540 # This message is used to specify a region of interest within an image.\n\
00541 #\n\
00542 # When used to specify the ROI setting of the camera when the image was\n\
00543 # taken, the height and width fields should either match the height and\n\
00544 # width fields for the associated image; or height = width = 0\n\
00545 # indicates that the full resolution image was captured.\n\
00546 \n\
00547 uint32 x_offset # Leftmost pixel of the ROI\n\
00548 # (0 if the ROI includes the left edge of the image)\n\
00549 uint32 y_offset # Topmost pixel of the ROI\n\
00550 # (0 if the ROI includes the top edge of the image)\n\
00551 uint32 height # Height of ROI\n\
00552 uint32 width # Width of ROI\n\
00553 \n\
00554 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00555 # ROI in this message. Typically this should be False if the full image\n\
00556 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00557 # used).\n\
00558 bool do_rectify\n\
00559 \n\
00560 ================================================================================\n\
00561 MSG: geometry_msgs/Vector3\n\
00562 # This represents a vector in free space. \n\
00563 \n\
00564 float64 x\n\
00565 float64 y\n\
00566 float64 z\n\
00567 ";
00568 }
00569
00570 static const char* value(const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> &) { return value(); }
00571 };
00572
00573 }
00574 }
00575
00576 namespace ros
00577 {
00578 namespace serialization
00579 {
00580
00581 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> >
00582 {
00583 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00584 {
00585 stream.next(m.grasps);
00586 }
00587
00588 ROS_DECLARE_ALLINONE_SERIALIZER;
00589 };
00590 }
00591 }
00592
00593 namespace ros
00594 {
00595 namespace message_operations
00596 {
00597
00598 template<class ContainerAllocator>
00599 struct Printer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> >
00600 {
00601 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> & v)
00602 {
00603 s << indent << "grasps[]" << std::endl;
00604 for (size_t i = 0; i < v.grasps.size(); ++i)
00605 {
00606 s << indent << " grasps[" << i << "]: ";
00607 s << std::endl;
00608 s << indent;
00609 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasps[i]);
00610 }
00611 }
00612 };
00613
00614
00615 }
00616 }
00617
00618 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGFEEDBACK_H
00619