Public Member Functions | Static Public Member Functions | Public Attributes | List of all members
sophus.se3.Se3 Class Reference

Public Member Functions

def __getitem__ (self, key)
 
def __init__ (self, so3, t)
 
def __mul__ (self, right)
 
def __repr__ (self)
 
def calc_Dx_this_mul_exp_x_at_0 (self, x)
 
def inverse (self)
 
def log (self)
 
def matrix (self)
 

Static Public Member Functions

def calc_Dx_exp_x (x)
 
def calc_Dx_exp_x_at_0 (x)
 
def calc_Dxi_exp_x_matrix (x, i)
 
def calc_Dxi_exp_x_matrix_at_0 (x, i)
 
def calc_Dxi_x_matrix (x, i)
 
def Dx_exp_x_at_0 ()
 
def Dxi_exp_x_matrix (x, i)
 
def Dxi_exp_x_matrix_at_0 (i)
 
def Dxi_x_matrix (x, i)
 
def exp (v)
 
def hat (v)
 
def vee (Omega)
 

Public Attributes

 so3
 
 t
 

Detailed Description

3 dimensional group of rigid body transformations 

Definition at line 8 of file se3.py.

Constructor & Destructor Documentation

◆ __init__()

def sophus.se3.Se3.__init__ (   self,
  so3,
  t 
)
internally represented by a unit quaternion q and a translation
    3-vector 

Definition at line 11 of file se3.py.

Member Function Documentation

◆ __getitem__()

def sophus.se3.Se3.__getitem__ (   self,
  key 
)
We use the following convention [q0, q1, q2, q3, t0, t1, t2] 

Definition at line 96 of file se3.py.

◆ __mul__()

def sophus.se3.Se3.__mul__ (   self,
  right 
)
left-multiplication
    either rotation concatenation or point-transform 

Definition at line 84 of file se3.py.

◆ __repr__()

def sophus.se3.Se3.__repr__ (   self)

Definition at line 49 of file se3.py.

◆ calc_Dx_exp_x()

def sophus.se3.Se3.calc_Dx_exp_x (   x)
static

Definition at line 105 of file se3.py.

◆ calc_Dx_exp_x_at_0()

def sophus.se3.Se3.calc_Dx_exp_x_at_0 (   x)
static

Definition at line 127 of file se3.py.

◆ calc_Dx_this_mul_exp_x_at_0()

def sophus.se3.Se3.calc_Dx_this_mul_exp_x_at_0 (   self,
  x 
)

Definition at line 119 of file se3.py.

◆ calc_Dxi_exp_x_matrix()

def sophus.se3.Se3.calc_Dxi_exp_x_matrix (   x,
  i 
)
static

Definition at line 154 of file se3.py.

◆ calc_Dxi_exp_x_matrix_at_0()

def sophus.se3.Se3.calc_Dxi_exp_x_matrix_at_0 (   x,
  i 
)
static

Definition at line 165 of file se3.py.

◆ calc_Dxi_x_matrix()

def sophus.se3.Se3.calc_Dxi_x_matrix (   x,
  i 
)
static

Definition at line 142 of file se3.py.

◆ Dx_exp_x_at_0()

def sophus.se3.Se3.Dx_exp_x_at_0 ( )
static

Definition at line 110 of file se3.py.

◆ Dxi_exp_x_matrix()

def sophus.se3.Se3.Dxi_exp_x_matrix (   x,
  i 
)
static

Definition at line 147 of file se3.py.

◆ Dxi_exp_x_matrix_at_0()

def sophus.se3.Se3.Dxi_exp_x_matrix_at_0 (   i)
static

Definition at line 159 of file se3.py.

◆ Dxi_x_matrix()

def sophus.se3.Se3.Dxi_x_matrix (   x,
  i 
)
static

Definition at line 132 of file se3.py.

◆ exp()

def sophus.se3.Se3.exp (   v)
static
exponential map 

Definition at line 22 of file se3.py.

◆ hat()

def sophus.se3.Se3.hat (   v)
static
R^6 => R^4x4  
returns 4x4-matrix representation ``Omega`` 

Definition at line 57 of file se3.py.

◆ inverse()

def sophus.se3.Se3.inverse (   self)

Definition at line 52 of file se3.py.

◆ log()

def sophus.se3.Se3.log (   self)

Definition at line 35 of file se3.py.

◆ matrix()

def sophus.se3.Se3.matrix (   self)
returns matrix representation 

Definition at line 79 of file se3.py.

◆ vee()

def sophus.se3.Se3.vee (   Omega)
static
R^4x4 => R^6 
returns 6-vector representation of Lie algebra 
This is the inverse of the hat-operator 

Definition at line 67 of file se3.py.

Member Data Documentation

◆ so3

sophus.se3.Se3.so3

Definition at line 18 of file se3.py.

◆ t

sophus.se3.Se3.t

Definition at line 19 of file se3.py.


The documentation for this class was generated from the following file:


sophus
Author(s): Hauke Strasdat
autogenerated on Wed Mar 2 2022 01:01:48