2 import matplotlib.pyplot
as plt
8 with open(
"doc/data.csv",
"r")
as cf:
9 plots = csv.DictReader(cf, delimiter=
",")
11 real_time.append(float(row[
'cpu_time']))
12 names.append(row[
'name'])
15 fig, axs = plt.subplots(2, 2)
18 real_time = np.array(real_time)
21 axs[0, 0].
plot(real_time[:10],
'--o', label=
'sob_layer')
22 axs[0, 0].
plot(real_time[20:30],
'--x', label=
'infaltion_layer')
23 axs[0, 0].set_title(
'100x100 square')
25 axs[0, 1].
plot(real_time[40:49],
'--o', label=
'sob_layer')
26 axs[0, 1].
plot(real_time[58:67],
'--x', label=
'infaltion_layer')
27 axs[0, 1].set_title(
'100x100 sparse')
29 axs[1, 0].
plot(real_time[10:20],
'--o', label=
'sob_layer')
30 axs[1, 0].
plot(real_time[30:40],
'--x', label=
'infaltion_layer')
31 axs[1, 0].set_title(
'1000x1000 square')
33 axs[1, 1].
plot(real_time[49:58],
'--o',label=
'sob_layer')
34 axs[1, 1].
plot(real_time[67:76],
'--x',label=
'infaltion_layer')
35 axs[1, 1].set_title(
'1000x1000 sparse')
38 ax.set(ylabel=
'cpu_time [ms]', xlabel=
'occupancy')
40 ax.set_xticklabels([])
44 fig.set_size_inches(10, 10)
45 fig.savefig(
'doc/stats.png', dpi=100)
48 rel1 = np.array(real_time[20:30]) / np.array(real_time[0:10])
49 rel2 = np.array(real_time[30:40]) / np.array(real_time[10:20])
50 rel3 = np.array(real_time[58:67]) / np.array(real_time[40:49])
51 rel4 = np.array(real_time[67:76]) / np.array(real_time[49:58])
53 fig, axs = plt.subplots(1)
54 plt.plot(rel1, label=
'relative 100x100 square')
55 plt.plot(rel2, label=
'relative 1000x1000 square')
56 plt.plot(rel3, label=
'relative 100x100 sparse')
57 plt.plot(rel4, label=
'relative 1000x1000 sparse')
60 fig.savefig(
'doc/relative.png', dpi=100)