ltable.c
Go to the documentation of this file.
1 /*
2 ** $Id: ltable.c $
3 ** Lua tables (hash)
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define ltable_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 /*
14 ** Implementation of tables (aka arrays, objects, or hash tables).
15 ** Tables keep its elements in two parts: an array part and a hash part.
16 ** Non-negative integer keys are all candidates to be kept in the array
17 ** part. The actual size of the array is the largest 'n' such that
18 ** more than half the slots between 1 and n are in use.
19 ** Hash uses a mix of chained scatter table with Brent's variation.
20 ** A main invariant of these tables is that, if an element is not
21 ** in its main position (i.e. the 'original' position that its hash gives
22 ** to it), then the colliding element is in its own main position.
23 ** Hence even when the load factor reaches 100%, performance remains good.
24 */
25 
26 #include <math.h>
27 #include <limits.h>
28 
29 #include "lua.h"
30 
31 #include "ldebug.h"
32 #include "ldo.h"
33 #include "lgc.h"
34 #include "lmem.h"
35 #include "lobject.h"
36 #include "lstate.h"
37 #include "lstring.h"
38 #include "ltable.h"
39 #include "lvm.h"
40 
41 
42 /*
43 ** MAXABITS is the largest integer such that MAXASIZE fits in an
44 ** unsigned int.
45 */
46 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
47 
48 
49 /*
50 ** MAXASIZE is the maximum size of the array part. It is the minimum
51 ** between 2^MAXABITS and the maximum size that, measured in bytes,
52 ** fits in a 'size_t'.
53 */
54 #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
55 
56 /*
57 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
58 ** signed int.
59 */
60 #define MAXHBITS (MAXABITS - 1)
61 
62 
63 /*
64 ** MAXHSIZE is the maximum size of the hash part. It is the minimum
65 ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
66 ** it fits in a 'size_t'.
67 */
68 #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
69 
70 
71 /*
72 ** When the original hash value is good, hashing by a power of 2
73 ** avoids the cost of '%'.
74 */
75 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
76 
77 /*
78 ** for other types, it is better to avoid modulo by power of 2, as
79 ** they can have many 2 factors.
80 */
81 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
82 
83 
84 #define hashstr(t,str) hashpow2(t, (str)->hash)
85 #define hashboolean(t,p) hashpow2(t, p)
86 
87 #define hashint(t,i) hashpow2(t, i)
88 
89 
90 #define hashpointer(t,p) hashmod(t, point2uint(p))
91 
92 
93 #define dummynode (&dummynode_)
94 
95 static const Node dummynode_ = {
96  {{NULL}, LUA_VEMPTY, /* value's value and type */
97  LUA_VNIL, 0, {NULL}} /* key type, next, and key value */
98 };
99 
100 
102 
103 
104 
105 /*
106 ** Hash for floating-point numbers.
107 ** The main computation should be just
108 ** n = frexp(n, &i); return (n * INT_MAX) + i
109 ** but there are some numerical subtleties.
110 ** In a two-complement representation, INT_MAX does not has an exact
111 ** representation as a float, but INT_MIN does; because the absolute
112 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
113 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
114 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
115 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
116 ** INT_MIN.
117 */
118 #if !defined(l_hashfloat)
119 static int l_hashfloat (lua_Number n) {
120  int i;
121  lua_Integer ni;
122  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
123  if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
124  lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
125  return 0;
126  }
127  else { /* normal case */
128  unsigned int u = cast_uint(i) + cast_uint(ni);
129  return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
130  }
131 }
132 #endif
133 
134 
135 /*
136 ** returns the 'main' position of an element in a table (that is,
137 ** the index of its hash value). The key comes broken (tag in 'ktt'
138 ** and value in 'vkl') so that we can call it on keys inserted into
139 ** nodes.
140 */
141 static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
142  switch (withvariant(ktt)) {
143  case LUA_VNUMINT: {
144  lua_Integer key = ivalueraw(*kvl);
145  return hashint(t, key);
146  }
147  case LUA_VNUMFLT: {
148  lua_Number n = fltvalueraw(*kvl);
149  return hashmod(t, l_hashfloat(n));
150  }
151  case LUA_VSHRSTR: {
152  TString *ts = tsvalueraw(*kvl);
153  return hashstr(t, ts);
154  }
155  case LUA_VLNGSTR: {
156  TString *ts = tsvalueraw(*kvl);
157  return hashpow2(t, luaS_hashlongstr(ts));
158  }
159  case LUA_VFALSE:
160  return hashboolean(t, 0);
161  case LUA_VTRUE:
162  return hashboolean(t, 1);
163  case LUA_VLIGHTUSERDATA: {
164  void *p = pvalueraw(*kvl);
165  return hashpointer(t, p);
166  }
167  case LUA_VLCF: {
168  lua_CFunction f = fvalueraw(*kvl);
169  return hashpointer(t, f);
170  }
171  default: {
172  GCObject *o = gcvalueraw(*kvl);
173  return hashpointer(t, o);
174  }
175  }
176 }
177 
178 
179 /*
180 ** Returns the main position of an element given as a 'TValue'
181 */
182 static Node *mainpositionTV (const Table *t, const TValue *key) {
183  return mainposition(t, rawtt(key), valraw(key));
184 }
185 
186 
187 /*
188 ** Check whether key 'k1' is equal to the key in node 'n2'. This
189 ** equality is raw, so there are no metamethods. Floats with integer
190 ** values have been normalized, so integers cannot be equal to
191 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
192 ** that short strings are handled in the default case.
193 ** A true 'deadok' means to accept dead keys as equal to their original
194 ** values. All dead keys are compared in the default case, by pointer
195 ** identity. (Only collectable objects can produce dead keys.) Note that
196 ** dead long strings are also compared by identity.
197 ** Once a key is dead, its corresponding value may be collected, and
198 ** then another value can be created with the same address. If this
199 ** other value is given to 'next', 'equalkey' will signal a false
200 ** positive. In a regular traversal, this situation should never happen,
201 ** as all keys given to 'next' came from the table itself, and therefore
202 ** could not have been collected. Outside a regular traversal, we
203 ** have garbage in, garbage out. What is relevant is that this false
204 ** positive does not break anything. (In particular, 'next' will return
205 ** some other valid item on the table or nil.)
206 */
207 static int equalkey (const TValue *k1, const Node *n2, int deadok) {
208  if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
209  !(deadok && keyisdead(n2) && iscollectable(k1)))
210  return 0; /* cannot be same key */
211  switch (keytt(n2)) {
212  case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
213  return 1;
214  case LUA_VNUMINT:
215  return (ivalue(k1) == keyival(n2));
216  case LUA_VNUMFLT:
217  return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
218  case LUA_VLIGHTUSERDATA:
219  return pvalue(k1) == pvalueraw(keyval(n2));
220  case LUA_VLCF:
221  return fvalue(k1) == fvalueraw(keyval(n2));
222  case ctb(LUA_VLNGSTR):
223  return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
224  default:
225  return gcvalue(k1) == gcvalueraw(keyval(n2));
226  }
227 }
228 
229 
230 /*
231 ** True if value of 'alimit' is equal to the real size of the array
232 ** part of table 't'. (Otherwise, the array part must be larger than
233 ** 'alimit'.)
234 */
235 #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
236 
237 
238 /*
239 ** Returns the real size of the 'array' array
240 */
241 LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
242  if (limitequalsasize(t))
243  return t->alimit; /* this is the size */
244  else {
245  unsigned int size = t->alimit;
246  /* compute the smallest power of 2 not smaller than 'n' */
247  size |= (size >> 1);
248  size |= (size >> 2);
249  size |= (size >> 4);
250  size |= (size >> 8);
251  size |= (size >> 16);
252 #if (UINT_MAX >> 30) > 3
253  size |= (size >> 32); /* unsigned int has more than 32 bits */
254 #endif
255  size++;
256  lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
257  return size;
258  }
259 }
260 
261 
262 /*
263 ** Check whether real size of the array is a power of 2.
264 ** (If it is not, 'alimit' cannot be changed to any other value
265 ** without changing the real size.)
266 */
267 static int ispow2realasize (const Table *t) {
268  return (!isrealasize(t) || ispow2(t->alimit));
269 }
270 
271 
272 static unsigned int setlimittosize (Table *t) {
273  t->alimit = luaH_realasize(t);
274  setrealasize(t);
275  return t->alimit;
276 }
277 
278 
279 #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
280 
281 
282 
283 /*
284 ** "Generic" get version. (Not that generic: not valid for integers,
285 ** which may be in array part, nor for floats with integral values.)
286 ** See explanation about 'deadok' in function 'equalkey'.
287 */
288 static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
289  Node *n = mainpositionTV(t, key);
290  for (;;) { /* check whether 'key' is somewhere in the chain */
291  if (equalkey(key, n, deadok))
292  return gval(n); /* that's it */
293  else {
294  int nx = gnext(n);
295  if (nx == 0)
296  return &absentkey; /* not found */
297  n += nx;
298  }
299  }
300 }
301 
302 
303 /*
304 ** returns the index for 'k' if 'k' is an appropriate key to live in
305 ** the array part of a table, 0 otherwise.
306 */
307 static unsigned int arrayindex (lua_Integer k) {
308  if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
309  return cast_uint(k); /* 'key' is an appropriate array index */
310  else
311  return 0;
312 }
313 
314 
315 /*
316 ** returns the index of a 'key' for table traversals. First goes all
317 ** elements in the array part, then elements in the hash part. The
318 ** beginning of a traversal is signaled by 0.
319 */
320 static unsigned int findindex (lua_State *L, Table *t, TValue *key,
321  unsigned int asize) {
322  unsigned int i;
323  if (ttisnil(key)) return 0; /* first iteration */
324  i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
325  if (i - 1u < asize) /* is 'key' inside array part? */
326  return i; /* yes; that's the index */
327  else {
328  const TValue *n = getgeneric(t, key, 1);
329  if (l_unlikely(isabstkey(n)))
330  luaG_runerror(L, "invalid key to 'next'"); /* key not found */
331  i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
332  /* hash elements are numbered after array ones */
333  return (i + 1) + asize;
334  }
335 }
336 
337 
338 int luaH_next (lua_State *L, Table *t, StkId key) {
339  unsigned int asize = luaH_realasize(t);
340  unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
341  for (; i < asize; i++) { /* try first array part */
342  if (!isempty(&t->array[i])) { /* a non-empty entry? */
343  setivalue(s2v(key), i + 1);
344  setobj2s(L, key + 1, &t->array[i]);
345  return 1;
346  }
347  }
348  for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
349  if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
350  Node *n = gnode(t, i);
351  getnodekey(L, s2v(key), n);
352  setobj2s(L, key + 1, gval(n));
353  return 1;
354  }
355  }
356  return 0; /* no more elements */
357 }
358 
359 
360 static void freehash (lua_State *L, Table *t) {
361  if (!isdummy(t))
363 }
364 
365 
366 /*
367 ** {=============================================================
368 ** Rehash
369 ** ==============================================================
370 */
371 
372 /*
373 ** Compute the optimal size for the array part of table 't'. 'nums' is a
374 ** "count array" where 'nums[i]' is the number of integers in the table
375 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
376 ** integer keys in the table and leaves with the number of keys that
377 ** will go to the array part; return the optimal size. (The condition
378 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
379 */
380 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
381  int i;
382  unsigned int twotoi; /* 2^i (candidate for optimal size) */
383  unsigned int a = 0; /* number of elements smaller than 2^i */
384  unsigned int na = 0; /* number of elements to go to array part */
385  unsigned int optimal = 0; /* optimal size for array part */
386  /* loop while keys can fill more than half of total size */
387  for (i = 0, twotoi = 1;
388  twotoi > 0 && *pna > twotoi / 2;
389  i++, twotoi *= 2) {
390  a += nums[i];
391  if (a > twotoi/2) { /* more than half elements present? */
392  optimal = twotoi; /* optimal size (till now) */
393  na = a; /* all elements up to 'optimal' will go to array part */
394  }
395  }
396  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
397  *pna = na;
398  return optimal;
399 }
400 
401 
402 static int countint (lua_Integer key, unsigned int *nums) {
403  unsigned int k = arrayindex(key);
404  if (k != 0) { /* is 'key' an appropriate array index? */
405  nums[luaO_ceillog2(k)]++; /* count as such */
406  return 1;
407  }
408  else
409  return 0;
410 }
411 
412 
413 /*
414 ** Count keys in array part of table 't': Fill 'nums[i]' with
415 ** number of keys that will go into corresponding slice and return
416 ** total number of non-nil keys.
417 */
418 static unsigned int numusearray (const Table *t, unsigned int *nums) {
419  int lg;
420  unsigned int ttlg; /* 2^lg */
421  unsigned int ause = 0; /* summation of 'nums' */
422  unsigned int i = 1; /* count to traverse all array keys */
423  unsigned int asize = limitasasize(t); /* real array size */
424  /* traverse each slice */
425  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
426  unsigned int lc = 0; /* counter */
427  unsigned int lim = ttlg;
428  if (lim > asize) {
429  lim = asize; /* adjust upper limit */
430  if (i > lim)
431  break; /* no more elements to count */
432  }
433  /* count elements in range (2^(lg - 1), 2^lg] */
434  for (; i <= lim; i++) {
435  if (!isempty(&t->array[i-1]))
436  lc++;
437  }
438  nums[lg] += lc;
439  ause += lc;
440  }
441  return ause;
442 }
443 
444 
445 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
446  int totaluse = 0; /* total number of elements */
447  int ause = 0; /* elements added to 'nums' (can go to array part) */
448  int i = sizenode(t);
449  while (i--) {
450  Node *n = &t->node[i];
451  if (!isempty(gval(n))) {
452  if (keyisinteger(n))
453  ause += countint(keyival(n), nums);
454  totaluse++;
455  }
456  }
457  *pna += ause;
458  return totaluse;
459 }
460 
461 
462 /*
463 ** Creates an array for the hash part of a table with the given
464 ** size, or reuses the dummy node if size is zero.
465 ** The computation for size overflow is in two steps: the first
466 ** comparison ensures that the shift in the second one does not
467 ** overflow.
468 */
469 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
470  if (size == 0) { /* no elements to hash part? */
471  t->node = cast(Node *, dummynode); /* use common 'dummynode' */
472  t->lsizenode = 0;
473  t->lastfree = NULL; /* signal that it is using dummy node */
474  }
475  else {
476  int i;
477  int lsize = luaO_ceillog2(size);
478  if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
479  luaG_runerror(L, "table overflow");
480  size = twoto(lsize);
481  t->node = luaM_newvector(L, size, Node);
482  for (i = 0; i < (int)size; i++) {
483  Node *n = gnode(t, i);
484  gnext(n) = 0;
485  setnilkey(n);
486  setempty(gval(n));
487  }
488  t->lsizenode = cast_byte(lsize);
489  t->lastfree = gnode(t, size); /* all positions are free */
490  }
491 }
492 
493 
494 /*
495 ** (Re)insert all elements from the hash part of 'ot' into table 't'.
496 */
497 static void reinsert (lua_State *L, Table *ot, Table *t) {
498  int j;
499  int size = sizenode(ot);
500  for (j = 0; j < size; j++) {
501  Node *old = gnode(ot, j);
502  if (!isempty(gval(old))) {
503  /* doesn't need barrier/invalidate cache, as entry was
504  already present in the table */
505  TValue k;
506  getnodekey(L, &k, old);
507  luaH_set(L, t, &k, gval(old));
508  }
509  }
510 }
511 
512 
513 /*
514 ** Exchange the hash part of 't1' and 't2'.
515 */
516 static void exchangehashpart (Table *t1, Table *t2) {
517  lu_byte lsizenode = t1->lsizenode;
518  Node *node = t1->node;
519  Node *lastfree = t1->lastfree;
520  t1->lsizenode = t2->lsizenode;
521  t1->node = t2->node;
522  t1->lastfree = t2->lastfree;
523  t2->lsizenode = lsizenode;
524  t2->node = node;
525  t2->lastfree = lastfree;
526 }
527 
528 
529 /*
530 ** Resize table 't' for the new given sizes. Both allocations (for
531 ** the hash part and for the array part) can fail, which creates some
532 ** subtleties. If the first allocation, for the hash part, fails, an
533 ** error is raised and that is it. Otherwise, it copies the elements from
534 ** the shrinking part of the array (if it is shrinking) into the new
535 ** hash. Then it reallocates the array part. If that fails, the table
536 ** is in its original state; the function frees the new hash part and then
537 ** raises the allocation error. Otherwise, it sets the new hash part
538 ** into the table, initializes the new part of the array (if any) with
539 ** nils and reinserts the elements of the old hash back into the new
540 ** parts of the table.
541 */
542 void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
543  unsigned int nhsize) {
544  unsigned int i;
545  Table newt; /* to keep the new hash part */
546  unsigned int oldasize = setlimittosize(t);
547  TValue *newarray;
548  /* create new hash part with appropriate size into 'newt' */
549  setnodevector(L, &newt, nhsize);
550  if (newasize < oldasize) { /* will array shrink? */
551  t->alimit = newasize; /* pretend array has new size... */
552  exchangehashpart(t, &newt); /* and new hash */
553  /* re-insert into the new hash the elements from vanishing slice */
554  for (i = newasize; i < oldasize; i++) {
555  if (!isempty(&t->array[i]))
556  luaH_setint(L, t, i + 1, &t->array[i]);
557  }
558  t->alimit = oldasize; /* restore current size... */
559  exchangehashpart(t, &newt); /* and hash (in case of errors) */
560  }
561  /* allocate new array */
562  newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
563  if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
564  freehash(L, &newt); /* release new hash part */
565  luaM_error(L); /* raise error (with array unchanged) */
566  }
567  /* allocation ok; initialize new part of the array */
568  exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
569  t->array = newarray; /* set new array part */
570  t->alimit = newasize;
571  for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
572  setempty(&t->array[i]);
573  /* re-insert elements from old hash part into new parts */
574  reinsert(L, &newt, t); /* 'newt' now has the old hash */
575  freehash(L, &newt); /* free old hash part */
576 }
577 
578 
579 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
580  int nsize = allocsizenode(t);
581  luaH_resize(L, t, nasize, nsize);
582 }
583 
584 /*
585 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
586 */
587 static void rehash (lua_State *L, Table *t, const TValue *ek) {
588  unsigned int asize; /* optimal size for array part */
589  unsigned int na; /* number of keys in the array part */
590  unsigned int nums[MAXABITS + 1];
591  int i;
592  int totaluse;
593  for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
594  setlimittosize(t);
595  na = numusearray(t, nums); /* count keys in array part */
596  totaluse = na; /* all those keys are integer keys */
597  totaluse += numusehash(t, nums, &na); /* count keys in hash part */
598  /* count extra key */
599  if (ttisinteger(ek))
600  na += countint(ivalue(ek), nums);
601  totaluse++;
602  /* compute new size for array part */
603  asize = computesizes(nums, &na);
604  /* resize the table to new computed sizes */
605  luaH_resize(L, t, asize, totaluse - na);
606 }
607 
608 
609 
610 /*
611 ** }=============================================================
612 */
613 
614 
616  GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
617  Table *t = gco2t(o);
618  t->metatable = NULL;
619  t->flags = cast_byte(maskflags); /* table has no metamethod fields */
620  t->array = NULL;
621  t->alimit = 0;
622  setnodevector(L, t, 0);
623  return t;
624 }
625 
626 
627 void luaH_free (lua_State *L, Table *t) {
628  freehash(L, t);
630  luaM_free(L, t);
631 }
632 
633 
634 static Node *getfreepos (Table *t) {
635  if (!isdummy(t)) {
636  while (t->lastfree > t->node) {
637  t->lastfree--;
638  if (keyisnil(t->lastfree))
639  return t->lastfree;
640  }
641  }
642  return NULL; /* could not find a free place */
643 }
644 
645 
646 
647 /*
648 ** inserts a new key into a hash table; first, check whether key's main
649 ** position is free. If not, check whether colliding node is in its main
650 ** position or not: if it is not, move colliding node to an empty place and
651 ** put new key in its main position; otherwise (colliding node is in its main
652 ** position), new key goes to an empty position.
653 */
654 void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
655  Node *mp;
656  TValue aux;
657  if (l_unlikely(ttisnil(key)))
658  luaG_runerror(L, "table index is nil");
659  else if (ttisfloat(key)) {
660  lua_Number f = fltvalue(key);
661  lua_Integer k;
662  if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
663  setivalue(&aux, k);
664  key = &aux; /* insert it as an integer */
665  }
666  else if (l_unlikely(luai_numisnan(f)))
667  luaG_runerror(L, "table index is NaN");
668  }
669  if (ttisnil(value))
670  return; /* do not insert nil values */
671  mp = mainpositionTV(t, key);
672  if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
673  Node *othern;
674  Node *f = getfreepos(t); /* get a free place */
675  if (f == NULL) { /* cannot find a free place? */
676  rehash(L, t, key); /* grow table */
677  /* whatever called 'newkey' takes care of TM cache */
678  luaH_set(L, t, key, value); /* insert key into grown table */
679  return;
680  }
681  lua_assert(!isdummy(t));
682  othern = mainposition(t, keytt(mp), &keyval(mp));
683  if (othern != mp) { /* is colliding node out of its main position? */
684  /* yes; move colliding node into free position */
685  while (othern + gnext(othern) != mp) /* find previous */
686  othern += gnext(othern);
687  gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
688  *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
689  if (gnext(mp) != 0) {
690  gnext(f) += cast_int(mp - f); /* correct 'next' */
691  gnext(mp) = 0; /* now 'mp' is free */
692  }
693  setempty(gval(mp));
694  }
695  else { /* colliding node is in its own main position */
696  /* new node will go into free position */
697  if (gnext(mp) != 0)
698  gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
699  else lua_assert(gnext(f) == 0);
700  gnext(mp) = cast_int(f - mp);
701  mp = f;
702  }
703  }
704  setnodekey(L, mp, key);
705  luaC_barrierback(L, obj2gco(t), key);
706  lua_assert(isempty(gval(mp)));
707  setobj2t(L, gval(mp), value);
708 }
709 
710 
711 /*
712 ** Search function for integers. If integer is inside 'alimit', get it
713 ** directly from the array part. Otherwise, if 'alimit' is not equal to
714 ** the real size of the array, key still can be in the array part. In
715 ** this case, try to avoid a call to 'luaH_realasize' when key is just
716 ** one more than the limit (so that it can be incremented without
717 ** changing the real size of the array).
718 */
720  if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */
721  return &t->array[key - 1];
722  else if (!limitequalsasize(t) && /* key still may be in the array part? */
723  (l_castS2U(key) == t->alimit + 1 ||
724  l_castS2U(key) - 1u < luaH_realasize(t))) {
725  t->alimit = cast_uint(key); /* probably '#t' is here now */
726  return &t->array[key - 1];
727  }
728  else {
729  Node *n = hashint(t, key);
730  for (;;) { /* check whether 'key' is somewhere in the chain */
731  if (keyisinteger(n) && keyival(n) == key)
732  return gval(n); /* that's it */
733  else {
734  int nx = gnext(n);
735  if (nx == 0) break;
736  n += nx;
737  }
738  }
739  return &absentkey;
740  }
741 }
742 
743 
744 /*
745 ** search function for short strings
746 */
748  Node *n = hashstr(t, key);
749  lua_assert(key->tt == LUA_VSHRSTR);
750  for (;;) { /* check whether 'key' is somewhere in the chain */
751  if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
752  return gval(n); /* that's it */
753  else {
754  int nx = gnext(n);
755  if (nx == 0)
756  return &absentkey; /* not found */
757  n += nx;
758  }
759  }
760 }
761 
762 
763 const TValue *luaH_getstr (Table *t, TString *key) {
764  if (key->tt == LUA_VSHRSTR)
765  return luaH_getshortstr(t, key);
766  else { /* for long strings, use generic case */
767  TValue ko;
768  setsvalue(cast(lua_State *, NULL), &ko, key);
769  return getgeneric(t, &ko, 0);
770  }
771 }
772 
773 
774 /*
775 ** main search function
776 */
777 const TValue *luaH_get (Table *t, const TValue *key) {
778  switch (ttypetag(key)) {
779  case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
780  case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
781  case LUA_VNIL: return &absentkey;
782  case LUA_VNUMFLT: {
783  lua_Integer k;
784  if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
785  return luaH_getint(t, k); /* use specialized version */
786  /* else... */
787  } /* FALLTHROUGH */
788  default:
789  return getgeneric(t, key, 0);
790  }
791 }
792 
793 
794 /*
795 ** Finish a raw "set table" operation, where 'slot' is where the value
796 ** should have been (the result of a previous "get table").
797 ** Beware: when using this function you probably need to check a GC
798 ** barrier and invalidate the TM cache.
799 */
800 void luaH_finishset (lua_State *L, Table *t, const TValue *key,
801  const TValue *slot, TValue *value) {
802  if (isabstkey(slot))
803  luaH_newkey(L, t, key, value);
804  else
805  setobj2t(L, cast(TValue *, slot), value);
806 }
807 
808 
809 /*
810 ** beware: when using this function you probably need to check a GC
811 ** barrier and invalidate the TM cache.
812 */
813 void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
814  const TValue *slot = luaH_get(t, key);
815  luaH_finishset(L, t, key, slot, value);
816 }
817 
818 
819 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
820  const TValue *p = luaH_getint(t, key);
821  if (isabstkey(p)) {
822  TValue k;
823  setivalue(&k, key);
824  luaH_newkey(L, t, &k, value);
825  }
826  else
827  setobj2t(L, cast(TValue *, p), value);
828 }
829 
830 
831 /*
832 ** Try to find a boundary in the hash part of table 't'. From the
833 ** caller, we know that 'j' is zero or present and that 'j + 1' is
834 ** present. We want to find a larger key that is absent from the
835 ** table, so that we can do a binary search between the two keys to
836 ** find a boundary. We keep doubling 'j' until we get an absent index.
837 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
838 ** absent, we are ready for the binary search. ('j', being max integer,
839 ** is larger or equal to 'i', but it cannot be equal because it is
840 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
841 ** boundary. ('j + 1' cannot be a present integer key because it is
842 ** not a valid integer in Lua.)
843 */
845  lua_Unsigned i;
846  if (j == 0) j++; /* the caller ensures 'j + 1' is present */
847  do {
848  i = j; /* 'i' is a present index */
849  if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
850  j *= 2;
851  else {
852  j = LUA_MAXINTEGER;
853  if (isempty(luaH_getint(t, j))) /* t[j] not present? */
854  break; /* 'j' now is an absent index */
855  else /* weird case */
856  return j; /* well, max integer is a boundary... */
857  }
858  } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
859  /* i < j && t[i] present && t[j] absent */
860  while (j - i > 1u) { /* do a binary search between them */
861  lua_Unsigned m = (i + j) / 2;
862  if (isempty(luaH_getint(t, m))) j = m;
863  else i = m;
864  }
865  return i;
866 }
867 
868 
869 static unsigned int binsearch (const TValue *array, unsigned int i,
870  unsigned int j) {
871  while (j - i > 1u) { /* binary search */
872  unsigned int m = (i + j) / 2;
873  if (isempty(&array[m - 1])) j = m;
874  else i = m;
875  }
876  return i;
877 }
878 
879 
880 /*
881 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
882 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
883 ** and 'maxinteger' if t[maxinteger] is present.)
884 ** (In the next explanation, we use Lua indices, that is, with base 1.
885 ** The code itself uses base 0 when indexing the array part of the table.)
886 ** The code starts with 'limit = t->alimit', a position in the array
887 ** part that may be a boundary.
888 **
889 ** (1) If 't[limit]' is empty, there must be a boundary before it.
890 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
891 ** is present. If so, it is a boundary. Otherwise, do a binary search
892 ** between 0 and limit to find a boundary. In both cases, try to
893 ** use this boundary as the new 'alimit', as a hint for the next call.
894 **
895 ** (2) If 't[limit]' is not empty and the array has more elements
896 ** after 'limit', try to find a boundary there. Again, try first
897 ** the special case (which should be quite frequent) where 'limit+1'
898 ** is empty, so that 'limit' is a boundary. Otherwise, check the
899 ** last element of the array part. If it is empty, there must be a
900 ** boundary between the old limit (present) and the last element
901 ** (absent), which is found with a binary search. (This boundary always
902 ** can be a new limit.)
903 **
904 ** (3) The last case is when there are no elements in the array part
905 ** (limit == 0) or its last element (the new limit) is present.
906 ** In this case, must check the hash part. If there is no hash part
907 ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
908 ** 'hash_search' to find a boundary in the hash part of the table.
909 ** (In those cases, the boundary is not inside the array part, and
910 ** therefore cannot be used as a new limit.)
911 */
913  unsigned int limit = t->alimit;
914  if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
915  /* there must be a boundary before 'limit' */
916  if (limit >= 2 && !isempty(&t->array[limit - 2])) {
917  /* 'limit - 1' is a boundary; can it be a new limit? */
918  if (ispow2realasize(t) && !ispow2(limit - 1)) {
919  t->alimit = limit - 1;
920  setnorealasize(t); /* now 'alimit' is not the real size */
921  }
922  return limit - 1;
923  }
924  else { /* must search for a boundary in [0, limit] */
925  unsigned int boundary = binsearch(t->array, 0, limit);
926  /* can this boundary represent the real size of the array? */
927  if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
928  t->alimit = boundary; /* use it as the new limit */
929  setnorealasize(t);
930  }
931  return boundary;
932  }
933  }
934  /* 'limit' is zero or present in table */
935  if (!limitequalsasize(t)) { /* (2)? */
936  /* 'limit' > 0 and array has more elements after 'limit' */
937  if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
938  return limit; /* this is the boundary */
939  /* else, try last element in the array */
940  limit = luaH_realasize(t);
941  if (isempty(&t->array[limit - 1])) { /* empty? */
942  /* there must be a boundary in the array after old limit,
943  and it must be a valid new limit */
944  unsigned int boundary = binsearch(t->array, t->alimit, limit);
945  t->alimit = boundary;
946  return boundary;
947  }
948  /* else, new limit is present in the table; check the hash part */
949  }
950  /* (3) 'limit' is the last element and either is zero or present in table */
951  lua_assert(limit == luaH_realasize(t) &&
952  (limit == 0 || !isempty(&t->array[limit - 1])));
953  if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
954  return limit; /* 'limit + 1' is absent */
955  else /* 'limit + 1' is also present */
956  return hash_search(t, limit);
957 }
958 
959 
960 
961 #if defined(LUA_DEBUG)
962 
963 /* export these functions for the test library */
964 
965 Node *luaH_mainposition (const Table *t, const TValue *key) {
966  return mainpositionTV(t, key);
967 }
968 
969 int luaH_isdummy (const Table *t) { return isdummy(t); }
970 
971 #endif
s2v
#define s2v(o)
Definition: lobject.h:159
luaC_newobj
GCObject * luaC_newobj(lua_State *L, int tt, size_t sz)
Definition: lgc.c:258
pvalueraw
#define pvalueraw(v)
Definition: lobject.h:426
lua_assert
#define lua_assert(c)
Definition: lauxlib.h:170
gcvalueraw
#define gcvalueraw(v)
Definition: lobject.h:294
lua_Unsigned
LUA_UNSIGNED lua_Unsigned
Definition: lua.h:97
LUAI_FUNC
#define LUAI_FUNC
Definition: luaconf.h:312
MAXASIZE
#define MAXASIZE
Definition: ltable.c:54
cast_byte
#define cast_byte(i)
Definition: llimits.h:130
luaH_free
void luaH_free(lua_State *L, Table *t)
Definition: ltable.c:627
cast
#define cast(t, exp)
Definition: llimits.h:123
Table::flags
lu_byte flags
Definition: lobject.h:726
TString
Definition: lobject.h:373
keytt
#define keytt(node)
Definition: lobject.h:740
lstate.h
eqshrstr
#define eqshrstr(a, b)
Definition: lstring.h:41
isrealasize
#define isrealasize(t)
Definition: lobject.h:719
pvalue
#define pvalue(o)
Definition: lobject.h:423
tsvalueraw
#define tsvalueraw(v)
Definition: lobject.h:354
setsvalue
#define setsvalue(L, obj, x)
Definition: lobject.h:358
hashpointer
#define hashpointer(t, p)
Definition: ltable.c:90
luaH_newkey
void luaH_newkey(lua_State *L, Table *t, const TValue *key, TValue *value)
Definition: ltable.c:654
hashint
#define hashint(t, i)
Definition: ltable.c:87
rehash
static void rehash(lua_State *L, Table *t, const TValue *ek)
Definition: ltable.c:587
StackValue
Definition: lobject.h:146
setnorealasize
#define setnorealasize(t)
Definition: lobject.h:721
luaC_barrierback
#define luaC_barrierback(L, p, v)
Definition: lgc.h:169
setnodekey
#define setnodekey(L, node, obj)
Definition: lobject.h:698
ltable.h
hashmod
#define hashmod(t, n)
Definition: ltable.c:81
Table::array
TValue * array
Definition: lobject.h:729
limitequalsasize
#define limitequalsasize(t)
Definition: ltable.c:235
luaG_runerror
l_noret luaG_runerror(lua_State *L, const char *fmt,...)
Definition: ldebug.c:778
LUA_VNUMINT
#define LUA_VNUMINT
Definition: lobject.h:310
isempty
#define isempty(v)
Definition: lobject.h:204
mainpositionTV
static Node * mainpositionTV(const Table *t, const TValue *key)
Definition: ltable.c:182
getnodekey
#define getnodekey(L, obj, node)
Definition: lobject.h:705
LUA_VNUMFLT
#define LUA_VNUMFLT
Definition: lobject.h:311
obj2gco
#define obj2gco(v)
Definition: lstate.h:385
gcvalue
#define gcvalue(o)
Definition: lobject.h:292
gnode
#define gnode(t, i)
Definition: ltable.h:13
fvalue
#define fvalue(o)
Definition: lobject.h:592
fvalueraw
#define fvalueraw(v)
Definition: lobject.h:595
ttisinteger
#define ttisinteger(o)
Definition: lobject.h:315
LUA_VEMPTY
#define LUA_VEMPTY
Definition: lobject.h:173
cast_uint
#define cast_uint(i)
Definition: llimits.h:129
luai_numisnan
#define luai_numisnan(a)
Definition: llimits.h:328
lua_Number
LUA_NUMBER lua_Number
Definition: lua.h:90
nodefromval
#define nodefromval(v)
Definition: ltable.h:35
luaM_error
#define luaM_error(L)
Definition: lmem.h:17
LUA_VFALSE
#define LUA_VFALSE
Definition: lobject.h:226
luaH_getint
const TValue * luaH_getint(Table *t, lua_Integer key)
Definition: ltable.c:719
reinsert
static void reinsert(lua_State *L, Table *ot, Table *t)
Definition: ltable.c:497
dummynode
#define dummynode
Definition: ltable.c:93
withvariant
#define withvariant(t)
Definition: lobject.h:81
luaH_getshortstr
const TValue * luaH_getshortstr(Table *t, TString *key)
Definition: ltable.c:747
luaM_newvector
#define luaM_newvector(L, n, t)
Definition: lmem.h:60
keyival
#define keyival(node)
Definition: lobject.h:745
ispow2
#define ispow2(x)
Definition: llimits.h:66
f
f
LUA_VTABLE
#define LUA_VTABLE
Definition: lobject.h:665
maskflags
#define maskflags
Definition: ltm.h:54
luaH_resize
void luaH_resize(lua_State *L, Table *t, unsigned int newasize, unsigned int nhsize)
Definition: ltable.c:542
luaH_resizearray
void luaH_resizearray(lua_State *L, Table *t, unsigned int nasize)
Definition: ltable.c:579
lua.h
setnilkey
#define setnilkey(node)
Definition: lobject.h:749
fltvalueraw
#define fltvalueraw(v)
Definition: lobject.h:322
fltvalue
#define fltvalue(o)
Definition: lobject.h:319
twoto
#define twoto(x)
Definition: lobject.h:777
gval
#define gval(n)
Definition: ltable.h:14
luaH_set
void luaH_set(lua_State *L, Table *t, const TValue *key, TValue *value)
Definition: ltable.c:813
nonstd::span_lite::size
span_constexpr std::size_t size(span< T, Extent > const &spn)
Definition: span.hpp:1554
countint
static int countint(lua_Integer key, unsigned int *nums)
Definition: ltable.c:402
ttisnil
#define ttisnil(v)
Definition: lobject.h:180
keystrval
#define keystrval(node)
Definition: lobject.h:747
findindex
static unsigned int findindex(lua_State *L, Table *t, TValue *key, unsigned int asize)
Definition: ltable.c:320
ivalue
#define ivalue(o)
Definition: lobject.h:320
setnodevector
static void setnodevector(lua_State *L, Table *t, unsigned int size)
Definition: ltable.c:469
ABSTKEYCONSTANT
#define ABSTKEYCONSTANT
Definition: lobject.h:208
binsearch
static unsigned int binsearch(const TValue *array, unsigned int i, unsigned int j)
Definition: ltable.c:869
numusearray
static unsigned int numusearray(const Table *t, unsigned int *nums)
Definition: ltable.c:418
luaO_ceillog2
int luaO_ceillog2(unsigned int x)
Definition: lobject.c:35
lvm.h
setobj2t
#define setobj2t
Definition: lobject.h:135
luaH_get
const TValue * luaH_get(Table *t, const TValue *key)
Definition: ltable.c:777
LUA_VLNGSTR
#define LUA_VLNGSTR
Definition: lobject.h:348
LUA_VSHRSTR
#define LUA_VSHRSTR
Definition: lobject.h:347
luaS_hashlongstr
unsigned int luaS_hashlongstr(TString *ts)
Definition: lstring.c:51
keyisdead
#define keyisdead(node)
Definition: lobject.h:764
lua_numbertointeger
#define lua_numbertointeger(n, p)
Definition: luaconf.h:417
lprefix.h
LUA_VTRUE
#define LUA_VTRUE
Definition: lobject.h:227
equalkey
static int equalkey(const TValue *k1, const Node *n2, int deadok)
Definition: ltable.c:207
gco2t
#define gco2t(o)
Definition: lstate.h:375
l_hashfloat
static int l_hashfloat(lua_Number n)
Definition: ltable.c:119
ldebug.h
MAXHSIZE
#define MAXHSIZE
Definition: ltable.c:68
luaV_flttointeger
int luaV_flttointeger(lua_Number n, lua_Integer *p, F2Imod mode)
Definition: lvm.c:121
lu_byte
unsigned char lu_byte
Definition: llimits.h:36
lua_State
Definition: lstate.h:304
getgeneric
static const TValue * getgeneric(Table *t, const TValue *key, int deadok)
Definition: ltable.c:288
MAXABITS
#define MAXABITS
Definition: ltable.c:46
LUA_VNIL
#define LUA_VNIL
Definition: lobject.h:170
F2Ieq
@ F2Ieq
Definition: lvm.h:44
Table::metatable
struct Table * metatable
Definition: lobject.h:732
luaH_getstr
const TValue * luaH_getstr(Table *t, TString *key)
Definition: ltable.c:763
exchangehashpart
static void exchangehashpart(Table *t1, Table *t2)
Definition: ltable.c:516
Table::alimit
unsigned int alimit
Definition: lobject.h:728
GCObject
Definition: lobject.h:279
luaH_realasize
LUAI_FUNC unsigned int luaH_realasize(const Table *t)
Definition: ltable.c:241
lobject.h
hash_search
static lua_Unsigned hash_search(Table *t, lua_Unsigned j)
Definition: ltable.c:844
luaH_new
Table * luaH_new(lua_State *L)
Definition: ltable.c:615
dummynode_
static const Node dummynode_
Definition: ltable.c:95
LUA_VLIGHTUSERDATA
#define LUA_VLIGHTUSERDATA
Definition: lobject.h:416
lua_Integer
LUA_INTEGER lua_Integer
Definition: lua.h:94
allocsizenode
#define allocsizenode(t)
Definition: ltable.h:31
hashboolean
#define hashboolean(t, p)
Definition: ltable.c:85
keyisinteger
#define keyisinteger(node)
Definition: lobject.h:744
limitasasize
#define limitasasize(t)
Definition: ltable.c:279
luaM_reallocvector
#define luaM_reallocvector(L, v, oldn, n, t)
Definition: lmem.h:70
isdummy
#define isdummy(t)
Definition: ltable.h:27
hashpow2
#define hashpow2(t, n)
Definition: ltable.c:75
keyisnil
#define keyisnil(node)
Definition: lobject.h:743
sizenode
#define sizenode(t)
Definition: lobject.h:778
setempty
#define setempty(v)
Definition: lobject.h:212
ttypetag
#define ttypetag(o)
Definition: lobject.h:82
l_castS2U
#define l_castS2U(i)
Definition: llimits.h:139
cast_sizet
#define cast_sizet(i)
Definition: llimits.h:134
gnext
#define gnext(n)
Definition: ltable.h:15
keyval
#define keyval(node)
Definition: lobject.h:741
luaH_getn
lua_Unsigned luaH_getn(Table *t)
Definition: ltable.c:912
tsvalue
#define tsvalue(o)
Definition: lobject.h:356
ivalueraw
#define ivalueraw(v)
Definition: lobject.h:323
setlimittosize
static unsigned int setlimittosize(Table *t)
Definition: ltable.c:272
udp_client.int
int
Definition: udp_client.py:11
luaH_setint
void luaH_setint(lua_State *L, Table *t, lua_Integer key, TValue *value)
Definition: ltable.c:819
luaH_next
int luaH_next(lua_State *L, Table *t, StkId key)
Definition: ltable.c:338
valraw
#define valraw(o)
Definition: lobject.h:71
setivalue
#define setivalue(obj, x)
Definition: lobject.h:331
MAXHBITS
#define MAXHBITS
Definition: ltable.c:60
arrayindex
static unsigned int arrayindex(lua_Integer k)
Definition: ltable.c:307
absentkey
static const TValue absentkey
Definition: ltable.c:101
rawtt
#define rawtt(o)
Definition: lobject.h:75
freehash
static void freehash(lua_State *L, Table *t)
Definition: ltable.c:360
getfreepos
static Node * getfreepos(Table *t)
Definition: ltable.c:634
setobj2s
#define setobj2s(L, o1, o2)
Definition: lobject.h:129
lstring.h
Table::node
Node * node
Definition: lobject.h:730
Node
Definition: lobject.h:686
hashstr
#define hashstr(t, str)
Definition: ltable.c:84
luai_numeq
#define luai_numeq(a, b)
Definition: llimits.h:323
luaM_free
#define luaM_free(L, b)
Definition: lmem.h:56
lua_CFunction
int(* lua_CFunction)(lua_State *L)
Definition: lua.h:106
lmem.h
LUA_VLCF
#define LUA_VLCF
Definition: lobject.h:578
luaM_freearray
#define luaM_freearray(L, b, n)
Definition: lmem.h:57
lgc.h
mainposition
static Node * mainposition(const Table *t, int ktt, const Value *kvl)
Definition: ltable.c:141
setrealasize
#define setrealasize(t)
Definition: lobject.h:720
numusehash
static int numusehash(const Table *t, unsigned int *nums, unsigned int *pna)
Definition: ltable.c:445
luaS_eqlngstr
int luaS_eqlngstr(TString *a, TString *b)
Definition: lstring.c:34
Table::lastfree
Node * lastfree
Definition: lobject.h:731
Value
Definition: lobject.h:49
luaH_finishset
void luaH_finishset(lua_State *L, Table *t, const TValue *key, const TValue *slot, TValue *value)
Definition: ltable.c:800
keyisshrstr
#define keyisshrstr(node)
Definition: lobject.h:746
iscollectable
#define iscollectable(o)
Definition: lobject.h:287
isabstkey
#define isabstkey(v)
Definition: lobject.h:190
ispow2realasize
static int ispow2realasize(const Table *t)
Definition: ltable.c:267
Table
Definition: lobject.h:724
computesizes
static unsigned int computesizes(unsigned int nums[], unsigned int *pna)
Definition: ltable.c:380
ctb
#define ctb(t)
Definition: lobject.h:290
Table::lsizenode
lu_byte lsizenode
Definition: lobject.h:727
cast_num
#define cast_num(i)
Definition: llimits.h:127
ldo.h
TValue
Definition: lobject.h:65
cast_int
#define cast_int(i)
Definition: llimits.h:128
ttisfloat
#define ttisfloat(o)
Definition: lobject.h:314


plotjuggler
Author(s): Davide Faconti
autogenerated on Mon Nov 11 2024 03:23:45