3rdparty
lua-5.4.3
src
lopcodes.h
Go to the documentation of this file.
1
/*
2
** $Id: lopcodes.h $
3
** Opcodes for Lua virtual machine
4
** See Copyright Notice in lua.h
5
*/
6
7
#ifndef lopcodes_h
8
#define lopcodes_h
9
10
#include "
llimits.h
"
11
12
13
/*===========================================================================
14
We assume that instructions are unsigned 32-bit integers.
15
All instructions have an opcode in the first 7 bits.
16
Instructions can have the following formats:
17
18
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
19
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
20
iABC C(8) | B(8) |k| A(8) | Op(7) |
21
iABx Bx(17) | A(8) | Op(7) |
22
iAsBx sBx (signed)(17) | A(8) | Op(7) |
23
iAx Ax(25) | Op(7) |
24
isJ sJ(25) | Op(7) |
25
26
A signed argument is represented in excess K: the represented value is
27
the written unsigned value minus K, where K is half the maximum for the
28
corresponding unsigned argument.
29
===========================================================================*/
30
31
32
enum
OpMode
{
iABC
,
iABx
,
iAsBx
,
iAx
,
isJ
};
/* basic instruction formats */
33
34
35
/*
36
** size and position of opcode arguments.
37
*/
38
#define SIZE_C 8
39
#define SIZE_B 8
40
#define SIZE_Bx (SIZE_C + SIZE_B + 1)
41
#define SIZE_A 8
42
#define SIZE_Ax (SIZE_Bx + SIZE_A)
43
#define SIZE_sJ (SIZE_Bx + SIZE_A)
44
45
#define SIZE_OP 7
46
47
#define POS_OP 0
48
49
#define POS_A (POS_OP + SIZE_OP)
50
#define POS_k (POS_A + SIZE_A)
51
#define POS_B (POS_k + 1)
52
#define POS_C (POS_B + SIZE_B)
53
54
#define POS_Bx POS_k
55
56
#define POS_Ax POS_A
57
58
#define POS_sJ POS_A
59
60
61
/*
62
** limits for opcode arguments.
63
** we use (signed) 'int' to manipulate most arguments,
64
** so they must fit in ints.
65
*/
66
67
/* Check whether type 'int' has at least 'b' bits ('b' < 32) */
68
#define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1)
69
70
71
#if L_INTHASBITS(SIZE_Bx)
72
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
73
#else
74
#define MAXARG_Bx MAX_INT
75
#endif
76
77
#define OFFSET_sBx (MAXARG_Bx>>1)
/* 'sBx' is signed */
78
79
80
#if L_INTHASBITS(SIZE_Ax)
81
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
82
#else
83
#define MAXARG_Ax MAX_INT
84
#endif
85
86
#if L_INTHASBITS(SIZE_sJ)
87
#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
88
#else
89
#define MAXARG_sJ MAX_INT
90
#endif
91
92
#define OFFSET_sJ (MAXARG_sJ >> 1)
93
94
95
#define MAXARG_A ((1<<SIZE_A)-1)
96
#define MAXARG_B ((1<<SIZE_B)-1)
97
#define MAXARG_C ((1<<SIZE_C)-1)
98
#define OFFSET_sC (MAXARG_C >> 1)
99
100
#define int2sC(i) ((i) + OFFSET_sC)
101
#define sC2int(i) ((i) - OFFSET_sC)
102
103
104
/* creates a mask with 'n' 1 bits at position 'p' */
105
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
106
107
/* creates a mask with 'n' 0 bits at position 'p' */
108
#define MASK0(n,p) (~MASK1(n,p))
109
110
/*
111
** the following macros help to manipulate instructions
112
*/
113
114
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
115
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
116
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
117
118
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
119
120
121
#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
122
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
123
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
124
125
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
126
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
127
128
#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
129
#define GETARG_sB(i) sC2int(GETARG_B(i))
130
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
131
132
#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
133
#define GETARG_sC(i) sC2int(GETARG_C(i))
134
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
135
136
#define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k)))))
137
#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
138
#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
139
140
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
141
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
142
143
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
144
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
145
146
#define GETARG_sBx(i) \
147
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
148
#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
149
150
#define GETARG_sJ(i) \
151
check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
152
#define SETARG_sJ(i,j) \
153
setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
154
155
156
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
157
| (cast(Instruction, a)<<POS_A) \
158
| (cast(Instruction, b)<<POS_B) \
159
| (cast(Instruction, c)<<POS_C) \
160
| (cast(Instruction, k)<<POS_k))
161
162
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
163
| (cast(Instruction, a)<<POS_A) \
164
| (cast(Instruction, bc)<<POS_Bx))
165
166
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
167
| (cast(Instruction, a)<<POS_Ax))
168
169
#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
170
| (cast(Instruction, j) << POS_sJ) \
171
| (cast(Instruction, k) << POS_k))
172
173
174
#if !defined(MAXINDEXRK)
/* (for debugging only) */
175
#define MAXINDEXRK MAXARG_B
176
#endif
177
178
179
/*
180
** invalid register that fits in 8 bits
181
*/
182
#define NO_REG MAXARG_A
183
184
185
/*
186
** R[x] - register
187
** K[x] - constant (in constant table)
188
** RK(x) == if k(i) then K[x] else R[x]
189
*/
190
191
192
/*
193
** grep "ORDER OP" if you change these enums
194
*/
195
196
typedef
enum
{
197
/*----------------------------------------------------------------------
198
name args description
199
------------------------------------------------------------------------*/
200
OP_MOVE
,
/* A B R[A] := R[B] */
201
OP_LOADI
,
/* A sBx R[A] := sBx */
202
OP_LOADF
,
/* A sBx R[A] := (lua_Number)sBx */
203
OP_LOADK
,
/* A Bx R[A] := K[Bx] */
204
OP_LOADKX
,
/* A R[A] := K[extra arg] */
205
OP_LOADFALSE
,
/* A R[A] := false */
206
OP_LFALSESKIP
,
/*A R[A] := false; pc++ */
207
OP_LOADTRUE
,
/* A R[A] := true */
208
OP_LOADNIL
,
/* A B R[A], R[A+1], ..., R[A+B] := nil */
209
OP_GETUPVAL
,
/* A B R[A] := UpValue[B] */
210
OP_SETUPVAL
,
/* A B UpValue[B] := R[A] */
211
212
OP_GETTABUP
,
/* A B C R[A] := UpValue[B][K[C]:string] */
213
OP_GETTABLE
,
/* A B C R[A] := R[B][R[C]] */
214
OP_GETI
,
/* A B C R[A] := R[B][C] */
215
OP_GETFIELD
,
/* A B C R[A] := R[B][K[C]:string] */
216
217
OP_SETTABUP
,
/* A B C UpValue[A][K[B]:string] := RK(C) */
218
OP_SETTABLE
,
/* A B C R[A][R[B]] := RK(C) */
219
OP_SETI
,
/* A B C R[A][B] := RK(C) */
220
OP_SETFIELD
,
/* A B C R[A][K[B]:string] := RK(C) */
221
222
OP_NEWTABLE
,
/* A B C k R[A] := {} */
223
224
OP_SELF
,
/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */
225
226
OP_ADDI
,
/* A B sC R[A] := R[B] + sC */
227
228
OP_ADDK
,
/* A B C R[A] := R[B] + K[C]:number */
229
OP_SUBK
,
/* A B C R[A] := R[B] - K[C]:number */
230
OP_MULK
,
/* A B C R[A] := R[B] * K[C]:number */
231
OP_MODK
,
/* A B C R[A] := R[B] % K[C]:number */
232
OP_POWK
,
/* A B C R[A] := R[B] ^ K[C]:number */
233
OP_DIVK
,
/* A B C R[A] := R[B] / K[C]:number */
234
OP_IDIVK
,
/* A B C R[A] := R[B] // K[C]:number */
235
236
OP_BANDK
,
/* A B C R[A] := R[B] & K[C]:integer */
237
OP_BORK
,
/* A B C R[A] := R[B] | K[C]:integer */
238
OP_BXORK
,
/* A B C R[A] := R[B] ~ K[C]:integer */
239
240
OP_SHRI
,
/* A B sC R[A] := R[B] >> sC */
241
OP_SHLI
,
/* A B sC R[A] := sC << R[B] */
242
243
OP_ADD
,
/* A B C R[A] := R[B] + R[C] */
244
OP_SUB
,
/* A B C R[A] := R[B] - R[C] */
245
OP_MUL
,
/* A B C R[A] := R[B] * R[C] */
246
OP_MOD
,
/* A B C R[A] := R[B] % R[C] */
247
OP_POW
,
/* A B C R[A] := R[B] ^ R[C] */
248
OP_DIV
,
/* A B C R[A] := R[B] / R[C] */
249
OP_IDIV
,
/* A B C R[A] := R[B] // R[C] */
250
251
OP_BAND
,
/* A B C R[A] := R[B] & R[C] */
252
OP_BOR
,
/* A B C R[A] := R[B] | R[C] */
253
OP_BXOR
,
/* A B C R[A] := R[B] ~ R[C] */
254
OP_SHL
,
/* A B C R[A] := R[B] << R[C] */
255
OP_SHR
,
/* A B C R[A] := R[B] >> R[C] */
256
257
OP_MMBIN
,
/* A B C call C metamethod over R[A] and R[B] */
258
OP_MMBINI
,
/* A sB C k call C metamethod over R[A] and sB */
259
OP_MMBINK
,
/* A B C k call C metamethod over R[A] and K[B] */
260
261
OP_UNM
,
/* A B R[A] := -R[B] */
262
OP_BNOT
,
/* A B R[A] := ~R[B] */
263
OP_NOT
,
/* A B R[A] := not R[B] */
264
OP_LEN
,
/* A B R[A] := #R[B] (length operator) */
265
266
OP_CONCAT
,
/* A B R[A] := R[A].. ... ..R[A + B - 1] */
267
268
OP_CLOSE
,
/* A close all upvalues >= R[A] */
269
OP_TBC
,
/* A mark variable A "to be closed" */
270
OP_JMP
,
/* sJ pc += sJ */
271
OP_EQ
,
/* A B k if ((R[A] == R[B]) ~= k) then pc++ */
272
OP_LT
,
/* A B k if ((R[A] < R[B]) ~= k) then pc++ */
273
OP_LE
,
/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */
274
275
OP_EQK
,
/* A B k if ((R[A] == K[B]) ~= k) then pc++ */
276
OP_EQI
,
/* A sB k if ((R[A] == sB) ~= k) then pc++ */
277
OP_LTI
,
/* A sB k if ((R[A] < sB) ~= k) then pc++ */
278
OP_LEI
,
/* A sB k if ((R[A] <= sB) ~= k) then pc++ */
279
OP_GTI
,
/* A sB k if ((R[A] > sB) ~= k) then pc++ */
280
OP_GEI
,
/* A sB k if ((R[A] >= sB) ~= k) then pc++ */
281
282
OP_TEST
,
/* A k if (not R[A] == k) then pc++ */
283
OP_TESTSET
,
/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] */
284
285
OP_CALL
,
/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
286
OP_TAILCALL
,
/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */
287
288
OP_RETURN
,
/* A B C k return R[A], ... ,R[A+B-2] (see note) */
289
OP_RETURN0
,
/* return */
290
OP_RETURN1
,
/* A return R[A] */
291
292
OP_FORLOOP
,
/* A Bx update counters; if loop continues then pc-=Bx; */
293
OP_FORPREP
,
/* A Bx <check values and prepare counters>;
294
if not to run then pc+=Bx+1; */
295
296
OP_TFORPREP
,
/* A Bx create upvalue for R[A + 3]; pc+=Bx */
297
OP_TFORCALL
,
/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */
298
OP_TFORLOOP
,
/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */
299
300
OP_SETLIST
,
/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */
301
302
OP_CLOSURE
,
/* A Bx R[A] := closure(KPROTO[Bx]) */
303
304
OP_VARARG
,
/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */
305
306
OP_VARARGPREP
,
/*A (adjust vararg parameters) */
307
308
OP_EXTRAARG
/* Ax extra (larger) argument for previous opcode */
309
}
OpCode
;
310
311
312
#define NUM_OPCODES ((int)(OP_EXTRAARG) + 1)
313
314
315
316
/*===========================================================================
317
Notes:
318
(*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
319
'top' is set to last_result+1, so next open instruction (OP_CALL,
320
OP_RETURN*, OP_SETLIST) may use 'top'.
321
322
(*) In OP_VARARG, if (C == 0) then use actual number of varargs and
323
set top (like in OP_CALL with C == 0).
324
325
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
326
327
(*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
328
OP_EXTRAARG.
329
330
(*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
331
real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
332
bits of C).
333
334
(*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
335
power of 2) plus 1, or zero for size zero. If not k, the array size
336
is C. Otherwise, the array size is EXTRAARG _ C.
337
338
(*) For comparisons, k specifies what condition the test should accept
339
(true or false).
340
341
(*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
342
(the constant is the first operand).
343
344
(*) All 'skips' (pc++) assume that next instruction is a jump.
345
346
(*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
347
function builds upvalues, which may need to be closed. C > 0 means
348
the function is vararg, so that its 'func' must be corrected before
349
returning; in this case, (C - 1) is its number of fixed parameters.
350
351
(*) In comparisons with an immediate operand, C signals whether the
352
original operand was a float. (It must be corrected in case of
353
metamethods.)
354
355
===========================================================================*/
356
357
358
/*
359
** masks for instruction properties. The format is:
360
** bits 0-2: op mode
361
** bit 3: instruction set register A
362
** bit 4: operator is a test (next instruction must be a jump)
363
** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
364
** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
365
** bit 7: instruction is an MM instruction (call a metamethod)
366
*/
367
368
LUAI_DDEC
(
const
lu_byte
luaP_opmodes
[
NUM_OPCODES
];)
369
370
#define
getOpMode
(m) (
cast
(
enum
OpMode
,
luaP_opmodes
[m] & 7))
371
#define
testAMode
(m) (
luaP_opmodes
[m] & (1 << 3))
372
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
373
#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
374
#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
375
#define testMMMode(m) (luaP_opmodes[m] & (1 << 7))
376
377
/* "out top" (set top for next instruction) */
378
#define isOT(i) \
379
((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
380
GET_OPCODE(i) == OP_TAILCALL)
381
382
/* "in top" (uses top from previous instruction) */
383
#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
384
385
#define opmode(mm,ot,it,t,a,m) \
386
(((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m))
387
388
389
/* number of list items to accumulate before a SETLIST instruction */
390
#define LFIELDS_PER_FLUSH 50
391
392
#endif
OP_SETLIST
@ OP_SETLIST
Definition:
lopcodes.h:300
OP_MODK
@ OP_MODK
Definition:
lopcodes.h:231
OP_VARARG
@ OP_VARARG
Definition:
lopcodes.h:304
OP_SELF
@ OP_SELF
Definition:
lopcodes.h:224
cast
#define cast(t, exp)
Definition:
llimits.h:123
OP_TFORPREP
@ OP_TFORPREP
Definition:
lopcodes.h:296
OP_TAILCALL
@ OP_TAILCALL
Definition:
lopcodes.h:286
OP_CALL
@ OP_CALL
Definition:
lopcodes.h:285
OP_SHR
@ OP_SHR
Definition:
lopcodes.h:255
OP_ADDI
@ OP_ADDI
Definition:
lopcodes.h:226
OP_GETUPVAL
@ OP_GETUPVAL
Definition:
lopcodes.h:209
OP_FORLOOP
@ OP_FORLOOP
Definition:
lopcodes.h:292
OP_CONCAT
@ OP_CONCAT
Definition:
lopcodes.h:266
OP_IDIVK
@ OP_IDIVK
Definition:
lopcodes.h:234
luaP_opmodes
const LUAI_DDEF lu_byte luaP_opmodes[NUM_OPCODES]
Definition:
lopcodes.c:18
OP_BNOT
@ OP_BNOT
Definition:
lopcodes.h:262
OP_LOADTRUE
@ OP_LOADTRUE
Definition:
lopcodes.h:207
OP_LTI
@ OP_LTI
Definition:
lopcodes.h:277
OP_BXORK
@ OP_BXORK
Definition:
lopcodes.h:238
llimits.h
iABx
@ iABx
Definition:
lopcodes.h:32
OP_LOADI
@ OP_LOADI
Definition:
lopcodes.h:201
OP_LE
@ OP_LE
Definition:
lopcodes.h:273
OP_LOADF
@ OP_LOADF
Definition:
lopcodes.h:202
OP_SUBK
@ OP_SUBK
Definition:
lopcodes.h:229
OP_LOADFALSE
@ OP_LOADFALSE
Definition:
lopcodes.h:205
OP_UNM
@ OP_UNM
Definition:
lopcodes.h:261
OP_MOVE
@ OP_MOVE
Definition:
lopcodes.h:200
OP_DIV
@ OP_DIV
Definition:
lopcodes.h:248
OP_CLOSE
@ OP_CLOSE
Definition:
lopcodes.h:268
OP_GETI
@ OP_GETI
Definition:
lopcodes.h:214
OP_NOT
@ OP_NOT
Definition:
lopcodes.h:263
OP_TFORLOOP
@ OP_TFORLOOP
Definition:
lopcodes.h:298
OP_SETI
@ OP_SETI
Definition:
lopcodes.h:219
OP_EXTRAARG
@ OP_EXTRAARG
Definition:
lopcodes.h:308
OP_GEI
@ OP_GEI
Definition:
lopcodes.h:280
OP_MMBINI
@ OP_MMBINI
Definition:
lopcodes.h:258
OP_CLOSURE
@ OP_CLOSURE
Definition:
lopcodes.h:302
OP_RETURN0
@ OP_RETURN0
Definition:
lopcodes.h:289
OP_DIVK
@ OP_DIVK
Definition:
lopcodes.h:233
OP_SETTABLE
@ OP_SETTABLE
Definition:
lopcodes.h:218
OP_SHRI
@ OP_SHRI
Definition:
lopcodes.h:240
lu_byte
unsigned char lu_byte
Definition:
llimits.h:36
OP_TBC
@ OP_TBC
Definition:
lopcodes.h:269
OP_IDIV
@ OP_IDIV
Definition:
lopcodes.h:249
OP_VARARGPREP
@ OP_VARARGPREP
Definition:
lopcodes.h:306
OP_ADD
@ OP_ADD
Definition:
lopcodes.h:243
OP_MOD
@ OP_MOD
Definition:
lopcodes.h:246
OP_EQK
@ OP_EQK
Definition:
lopcodes.h:275
OP_BXOR
@ OP_BXOR
Definition:
lopcodes.h:253
OP_SHLI
@ OP_SHLI
Definition:
lopcodes.h:241
OP_EQI
@ OP_EQI
Definition:
lopcodes.h:276
OP_LOADK
@ OP_LOADK
Definition:
lopcodes.h:203
OP_MUL
@ OP_MUL
Definition:
lopcodes.h:245
OP_BANDK
@ OP_BANDK
Definition:
lopcodes.h:236
OP_BORK
@ OP_BORK
Definition:
lopcodes.h:237
OpMode
OpMode
Definition:
lopcodes.h:32
iABC
@ iABC
Definition:
lopcodes.h:32
OP_GETFIELD
@ OP_GETFIELD
Definition:
lopcodes.h:215
OP_BOR
@ OP_BOR
Definition:
lopcodes.h:252
OP_LEN
@ OP_LEN
Definition:
lopcodes.h:264
OP_SUB
@ OP_SUB
Definition:
lopcodes.h:244
isJ
@ isJ
Definition:
lopcodes.h:32
OpCode
OpCode
Definition:
lopcodes.h:196
OP_TESTSET
@ OP_TESTSET
Definition:
lopcodes.h:283
OP_LOADKX
@ OP_LOADKX
Definition:
lopcodes.h:204
OP_SETFIELD
@ OP_SETFIELD
Definition:
lopcodes.h:220
getOpMode
#define getOpMode(m)
Definition:
lopcodes.h:370
testAMode
#define testAMode(m)
Definition:
lopcodes.h:371
LUAI_DDEC
#define LUAI_DDEC(dec)
Definition:
luaconf.h:315
OP_TEST
@ OP_TEST
Definition:
lopcodes.h:282
NUM_OPCODES
#define NUM_OPCODES
Definition:
lopcodes.h:312
OP_MMBINK
@ OP_MMBINK
Definition:
lopcodes.h:259
OP_MMBIN
@ OP_MMBIN
Definition:
lopcodes.h:257
OP_JMP
@ OP_JMP
Definition:
lopcodes.h:270
OP_ADDK
@ OP_ADDK
Definition:
lopcodes.h:228
iAx
@ iAx
Definition:
lopcodes.h:32
OP_POWK
@ OP_POWK
Definition:
lopcodes.h:232
OP_GETTABLE
@ OP_GETTABLE
Definition:
lopcodes.h:213
OP_GETTABUP
@ OP_GETTABUP
Definition:
lopcodes.h:212
OP_POW
@ OP_POW
Definition:
lopcodes.h:247
OP_TFORCALL
@ OP_TFORCALL
Definition:
lopcodes.h:297
OP_EQ
@ OP_EQ
Definition:
lopcodes.h:271
OP_LFALSESKIP
@ OP_LFALSESKIP
Definition:
lopcodes.h:206
OP_BAND
@ OP_BAND
Definition:
lopcodes.h:251
iAsBx
@ iAsBx
Definition:
lopcodes.h:32
OP_FORPREP
@ OP_FORPREP
Definition:
lopcodes.h:293
OP_LT
@ OP_LT
Definition:
lopcodes.h:272
OP_NEWTABLE
@ OP_NEWTABLE
Definition:
lopcodes.h:222
OP_RETURN1
@ OP_RETURN1
Definition:
lopcodes.h:290
OP_SETUPVAL
@ OP_SETUPVAL
Definition:
lopcodes.h:210
OP_LOADNIL
@ OP_LOADNIL
Definition:
lopcodes.h:208
OP_LEI
@ OP_LEI
Definition:
lopcodes.h:278
OP_SHL
@ OP_SHL
Definition:
lopcodes.h:254
OP_MULK
@ OP_MULK
Definition:
lopcodes.h:230
OP_SETTABUP
@ OP_SETTABUP
Definition:
lopcodes.h:217
OP_RETURN
@ OP_RETURN
Definition:
lopcodes.h:288
OP_GTI
@ OP_GTI
Definition:
lopcodes.h:279
plotjuggler
Author(s): Davide Faconti
autogenerated on Mon Nov 11 2024 03:23:45