kissfft_i32.hh
Go to the documentation of this file.
1 #ifndef KISSFFT_I32_CLASS_HH
2 #define KISSFFT_I32_CLASS_HH
3 
4 #include <complex>
5 #include <utility>
6 #include <vector>
7 
8 // TODO1: substitute complex<type> (behaviour not defined for nonfloats), should be faster
9 // TODO2: use std:: namespace
10 // TODO3: make unittests for all ffts (c, cpp, i32)
11 
12 template <typename DType>
13 struct complex_s
14 {
15  DType real;
16  DType imag;
17 };
18 
20 {
21 private:
22 
23  using scalar_type = int32_t;
24  using cpx_type = complex<int32_t>;
25 
28  bool _inverse;
29  std::vector<cpx_type> _twiddles;
30  std::vector<std::size_t> _stageRadix;
31  std::vector<std::size_t> _stageRemainder;
32 
33 public:
34 
35  // scale_factor: upscale twiddle-factors otherwise they lie between 0..1 (out of range for integer) --> fixed point math
36  kissfft_i32(const std::size_t nfft, const bool inverse, const double scale_factor = 1024.0)
37  : _scale_factor(scalar_type(scale_factor)), _nfft(nfft), _inverse(inverse)
38  {
39  // fill twiddle factors
40  _twiddles.resize(_nfft);
41  const double phinc = (_inverse ? 2 : -2) * acos(-1.0) / _nfft;
42  for (std::size_t i = 0; i < _nfft; ++i)
43  {
44  _twiddles[i] = scale_factor * exp(complex<double>(0, i * phinc));
45  }
46  //factorize
47  //start factoring out 4's, then 2's, then 3,5,7,9,...
48  std::size_t n = _nfft;
49  std::size_t p = 4;
50  do
51  {
52  while (n % p)
53  {
54  switch (p)
55  {
56  case 4:
57  p = 2;
58  break;
59  case 2:
60  p = 3;
61  break;
62  default:
63  p += 2;
64  break;
65  }
66  if (p * p > n) p = n;// no more factors
67  }
68  n /= p;
69  _stageRadix.push_back(p);
70  _stageRemainder.push_back(n);
71  } while (n > 1);
72  }
73 
86  void transform(const cpx_type * FSrc,
87  cpx_type * FDst,
88  const std::size_t stage = 0,
89  const std::size_t fstride = 1,
90  const std::size_t in_stride = 1) const
91  {
92  const std::size_t p = _stageRadix[stage];
93  const std::size_t m = _stageRemainder[stage];
94  cpx_type *const Fout_beg = FDst;
95  cpx_type *const Fout_end = FDst + p * m;
96 
97  if (m == 1)
98  {
99  do
100  {
101  *FDst = *FSrc;
102  FSrc += fstride * in_stride;
103  } while (++FDst != Fout_end);
104  }
105  else
106  {
107  do
108  {
109  // recursive call:
110  // DFT of size m*p performed by doing
111  // p instances of smaller DFTs of size m,
112  // each one takes a decimated version of the input
113  transform(FSrc, FDst, stage + 1, fstride * p, in_stride);
114  FSrc += fstride * in_stride;
115  } while ((FDst += m) != Fout_end);
116  }
117 
118  FDst = Fout_beg;
119 
120  // recombine the p smaller DFTs
121  switch (p)
122  {
123  case 2:
124  kf_bfly2(FDst, fstride, m);
125  break;
126  case 3:
127  kf_bfly3(FDst, fstride, m);
128  break;
129  case 4:
130  kf_bfly4(FDst, fstride, m);
131  break;
132  case 5:
133  kf_bfly5(FDst, fstride, m);
134  break;
135  default:
136  kf_bfly_generic(FDst, fstride, m, p);
137  break;
138  }
139  }
140 
141 private:
142 
143  void kf_bfly2(cpx_type *const Fout, const size_t fstride, const std::size_t m) const
144  {
145  for (std::size_t k = 0; k < m; ++k)
146  {
147  const cpx_type t = (Fout[m + k] * _twiddles[k * fstride]) / _scale_factor;
148  Fout[m + k] = Fout[k] - t;
149  Fout[k] += t;
150  }
151  }
152 
153  void kf_bfly3(cpx_type *Fout, const std::size_t fstride, const std::size_t m) const
154  {
155  std::size_t k = m;
156  const std::size_t m2 = 2 * m;
157  const cpx_type *tw1, *tw2;
158  cpx_type scratch[5];
159  const cpx_type epi3 = _twiddles[fstride * m];
160 
161  tw1 = tw2 = &_twiddles[0];
162 
163  do
164  {
165  scratch[1] = (Fout[m] * *tw1) / _scale_factor;
166  scratch[2] = (Fout[m2] * *tw2) / _scale_factor;
167 
168  scratch[3] = scratch[1] + scratch[2];
169  scratch[0] = scratch[1] - scratch[2];
170  tw1 += fstride;
171  tw2 += fstride * 2;
172 
173  Fout[m] = Fout[0] - (scratch[3] / 2);
174  scratch[0] *= epi3.imag();
175  scratch[0] /= _scale_factor;
176 
177  Fout[0] += scratch[3];
178 
179  Fout[m2] = cpx_type(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real());
180 
181  Fout[m] += cpx_type(-scratch[0].imag(), scratch[0].real());
182  ++Fout;
183  } while (--k);
184  }
185 
186  void kf_bfly4(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
187  {
188  cpx_type scratch[7];
189  const scalar_type negative_if_inverse = _inverse ? -1 : +1;
190 
191  for (std::size_t k = 0; k < m; ++k)
192  {
193  scratch[0] = (Fout[k + m] * _twiddles[k * fstride]) / _scale_factor;
194  scratch[1] = (Fout[k + 2 * m] * _twiddles[k * fstride * 2]) / _scale_factor;
195  scratch[2] = (Fout[k + 3 * m] * _twiddles[k * fstride * 3]) / _scale_factor;
196  scratch[5] = Fout[k] - scratch[1];
197 
198  Fout[k] += scratch[1];
199  scratch[3] = scratch[0] + scratch[2];
200  scratch[4] = scratch[0] - scratch[2];
201  scratch[4] = cpx_type(scratch[4].imag() * negative_if_inverse,
202  -scratch[4].real() * negative_if_inverse);
203 
204  Fout[k + 2 * m] = Fout[k] - scratch[3];
205  Fout[k] += scratch[3];
206  Fout[k + m] = scratch[5] + scratch[4];
207  Fout[k + 3 * m] = scratch[5] - scratch[4];
208  }
209  }
210 
211  void kf_bfly5(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
212  {
213  cpx_type *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
214  cpx_type scratch[13];
215  const cpx_type ya = _twiddles[fstride * m];
216  const cpx_type yb = _twiddles[fstride * 2 * m];
217 
218  Fout0 = Fout;
219  Fout1 = Fout0 + m;
220  Fout2 = Fout0 + 2 * m;
221  Fout3 = Fout0 + 3 * m;
222  Fout4 = Fout0 + 4 * m;
223 
224  for (std::size_t u = 0; u < m; ++u)
225  {
226  scratch[0] = *Fout0;
227 
228  scratch[1] = (*Fout1 * _twiddles[u * fstride]) / _scale_factor;
229  scratch[2] = (*Fout2 * _twiddles[2 * u * fstride]) / _scale_factor;
230  scratch[3] = (*Fout3 * _twiddles[3 * u * fstride]) / _scale_factor;
231  scratch[4] = (*Fout4 * _twiddles[4 * u * fstride]) / _scale_factor;
232 
233  scratch[7] = scratch[1] + scratch[4];
234  scratch[10] = scratch[1] - scratch[4];
235  scratch[8] = scratch[2] + scratch[3];
236  scratch[9] = scratch[2] - scratch[3];
237 
238  *Fout0 += scratch[7];
239  *Fout0 += scratch[8];
240 
241  scratch[5] = scratch[0] + (cpx_type(
242  scratch[7].real() * ya.real() + scratch[8].real() * yb.real(),
243  scratch[7].imag() * ya.real() + scratch[8].imag() * yb.real() ) / _scale_factor);
244 
245  scratch[6] = cpx_type(
246  scratch[10].imag() * ya.imag() + scratch[9].imag() * yb.imag(),
247  -scratch[10].real() * ya.imag() - scratch[9].real() * yb.imag() ) / _scale_factor;
248 
249  *Fout1 = scratch[5] - scratch[6];
250  *Fout4 = scratch[5] + scratch[6];
251 
252  scratch[11] = scratch[0] + (cpx_type(
253  scratch[7].real() * yb.real() + scratch[8].real() * ya.real(),
254  scratch[7].imag() * yb.real() + scratch[8].imag() * ya.real() ) / _scale_factor);
255 
256  scratch[12] = cpx_type(
257  -scratch[10].imag() * yb.imag() + scratch[9].imag() * ya.imag(),
258  scratch[10].real() * yb.imag() - scratch[9].real() * ya.imag() ) / _scale_factor;
259 
260  *Fout2 = scratch[11] + scratch[12];
261  *Fout3 = scratch[11] - scratch[12];
262 
263  ++Fout0;
264  ++Fout1;
265  ++Fout2;
266  ++Fout3;
267  ++Fout4;
268  }
269  }
270 
271  /* perform the butterfly for one stage of a mixed radix FFT */
272  void kf_bfly_generic(cpx_type * const Fout, const size_t fstride, const std::size_t m, const std::size_t p) const
273  {
274  const cpx_type *twiddles = &_twiddles[0];
275  cpx_type scratchbuf[p];
276 
277  for (std::size_t u = 0; u < m; ++u)
278  {
279  std::size_t k = u;
280  for (std::size_t q1 = 0; q1 < p; ++q1)
281  {
282  scratchbuf[q1] = Fout[k];
283  k += m;
284  }
285 
286  k = u;
287  for (std::size_t q1 = 0; q1 < p; ++q1)
288  {
289  std::size_t twidx = 0;
290  Fout[k] = scratchbuf[0];
291  for (std::size_t q = 1; q < p; ++q)
292  {
293  twidx += fstride * k;
294  if (twidx >= _nfft)
295  twidx -= _nfft;
296  Fout[k] += (scratchbuf[q] * twiddles[twidx]) / _scale_factor;
297  }
298  k += m;
299  }
300  }
301  }
302 };
303 
304 #endif
kissfft_i32::kf_bfly3
void kf_bfly3(cpx_type *Fout, const std::size_t fstride, const std::size_t m) const
Definition: kissfft_i32.hh:153
complex_s
Definition: kissfft_i32.hh:13
nonstd::span_lite::size_t
span_CONFIG_SIZE_TYPE size_t
Definition: span.hpp:576
kissfft_i32::kf_bfly4
void kf_bfly4(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
Definition: kissfft_i32.hh:186
kissfft_i32::_nfft
std::size_t _nfft
Definition: kissfft_i32.hh:27
complex_s::real
DType real
Definition: kissfft_i32.hh:15
kissfft_i32::_inverse
bool _inverse
Definition: kissfft_i32.hh:28
kissfft_i32::cpx_type
complex< int32_t > cpx_type
Definition: kissfft_i32.hh:24
kissfft_i32::_stageRadix
std::vector< std::size_t > _stageRadix
Definition: kissfft_i32.hh:30
kissfft_i32::kf_bfly2
void kf_bfly2(cpx_type *const Fout, const size_t fstride, const std::size_t m) const
Definition: kissfft_i32.hh:143
complex_s::imag
DType imag
Definition: kissfft_i32.hh:16
kissfft_i32::_scale_factor
scalar_type _scale_factor
Definition: kissfft_i32.hh:26
kissfft_i32::_stageRemainder
std::vector< std::size_t > _stageRemainder
Definition: kissfft_i32.hh:31
kissfft_i32::kf_bfly5
void kf_bfly5(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
Definition: kissfft_i32.hh:211
kissfft_i32::kf_bfly_generic
void kf_bfly_generic(cpx_type *const Fout, const size_t fstride, const std::size_t m, const std::size_t p) const
Definition: kissfft_i32.hh:272
kissfft_i32::scalar_type
int32_t scalar_type
Definition: kissfft_i32.hh:23
kissfft_i32::transform
void transform(const cpx_type *FSrc, cpx_type *FDst, const std::size_t stage=0, const std::size_t fstride=1, const std::size_t in_stride=1) const
Definition: kissfft_i32.hh:86
kissfft_i32::_twiddles
std::vector< cpx_type > _twiddles
Definition: kissfft_i32.hh:29
kissfft_i32
Definition: kissfft_i32.hh:19
kissfft_i32::kissfft_i32
kissfft_i32(const std::size_t nfft, const bool inverse, const double scale_factor=1024.0)
Definition: kissfft_i32.hh:36


plotjuggler
Author(s): Davide Faconti
autogenerated on Mon Nov 11 2024 03:23:44