44 using namespace Eigen;
66 this->covMatrix = this->estimateCovariance(mPts,
out);
78 Matrix J_hessian(Matrix::Zero(6,6));
79 Matrix d2J_dReadingdX(Matrix::Zero(6, max_nbr_point));
80 Matrix d2J_dReferencedX(Matrix::Zero(6, max_nbr_point));
82 Vector reading_point(Vector::Zero(3));
83 Vector reference_point(Vector::Zero(3));
85 Vector reading_direction(Vector::Zero(3));
86 Vector reference_direction(Vector::Zero(3));
91 if (normals.rows() < 3)
92 return std::numeric_limits<T>::max() * Matrix::Identity(6,6);
94 T beta = -asin(transformation(2,0));
95 T alpha = atan2(transformation(2,1), transformation(2,2));
96 T gamma = atan2(transformation(1,0)/cos(beta), transformation(0,0)/cos(beta));
97 T t_x = transformation(0,3);
98 T t_y = transformation(1,3);
99 T t_z = transformation(2,3);
101 Vector tmp_vector_6(Vector::Zero(6));
103 int valid_points_count = 0;
106 for(
int i = 0; i < max_nbr_point; ++i)
114 normal = normals.block(0,i,3,1);
116 T reading_range = reading_point.norm();
117 reading_direction = reading_point / reading_range;
118 T reference_range = reference_point.norm();
119 reference_direction = reference_point / reference_range;
121 T n_alpha = normal(2)*reading_direction(1) - normal(1)*reading_direction(2);
122 T n_beta = normal(0)*reading_direction(2) - normal(2)*reading_direction(0);
123 T n_gamma = normal(1)*reading_direction(0) - normal(0)*reading_direction(1);
125 T E = normal(0)*(reading_point(0) - gamma*reading_point(1) + beta*reading_point(2) + t_x - reference_point(0));
126 E += normal(1)*(gamma*reading_point(0) + reading_point(1) - alpha*reading_point(2) + t_y - reference_point(1));
127 E += normal(2)*(-beta*reading_point(0) + alpha*reading_point(1) + reading_point(2) + t_z - reference_point(2));
129 T N_reading = normal(0)*(reading_direction(0) - gamma*reading_direction(1) + beta*reading_direction(2));
130 N_reading += normal(1)*(gamma*reading_direction(0) + reading_direction(1) - alpha*reading_direction(2));
131 N_reading += normal(2)*(-beta*reading_direction(0) + alpha*reading_direction(1) + reading_direction(2));
133 T N_reference = -(normal(0)*reference_direction(0) + normal(1)*reference_direction(1) + normal(2)*reference_direction(2));
136 tmp_vector_6 << normal(0), normal(1), normal(2), reading_range * n_alpha, reading_range * n_beta, reading_range * n_gamma;
138 J_hessian += tmp_vector_6 * tmp_vector_6.transpose();
140 tmp_vector_6 << normal(0) * N_reading, normal(1) * N_reading, normal(2) * N_reading, n_alpha * (E + reading_range * N_reading), n_beta * (E + reading_range * N_reading), n_gamma * (E + reading_range * N_reading);
142 d2J_dReadingdX.block(0,valid_points_count,6,1) = tmp_vector_6;
144 tmp_vector_6 << normal(0) * N_reference, normal(1) * N_reference, normal(2) * N_reference, reference_range * n_alpha * N_reference, reference_range * n_beta * N_reference, reference_range * n_gamma * N_reference;
146 d2J_dReferencedX.block(0,valid_points_count,6,1) = tmp_vector_6;
148 valid_points_count++;
152 Matrix d2J_dZdX(Matrix::Zero(6, 2 * valid_points_count));
153 d2J_dZdX.block(0,0,6,valid_points_count) = d2J_dReadingdX.block(0,0,6,valid_points_count);
154 d2J_dZdX.block(0,valid_points_count,6,valid_points_count) = d2J_dReferencedX.block(0,0,6,valid_points_count);
156 Matrix inv_J_hessian = J_hessian.inverse();
161 return (sensorStdDev * sensorStdDev) *
covariance;