Go to the documentation of this file.
43 PointMatcher<T>::DataPointsFilter(
"MinDistDataPointsFilter",
56 inPlaceFilter(output);
67 if (dim >= cloud.
features.rows() - 1)
68 throw InvalidParameter((boost::format(
"MinDistDataPointsFilter: Error, filtering on dimension number %1%, larger than feature dimensionality %2%") % dim % (cloud.
features.rows() - 2)).str());
70 const int nbPointsIn = cloud.
features.cols();
71 const int nbRows = cloud.
features.rows();
76 const T absMinDist =
anyabs(minDist);
77 for (
int i = 0; i < nbPointsIn; ++i)
79 if (cloud.
features.col(i).head(nbRows-1).norm() > absMinDist)
88 for (
int i = 0; i < nbPointsIn; ++i)
90 if ((cloud.
features(dim, i)) > minDist)
Subsampling. Filter points before a minimum distance measured on a specific axis.
Functions and classes that are dependant on scalar type are defined in this templatized class.
void setColFrom(Index thisCol, const DataPoints &that, Index thatCol)
Set column thisCol equal to column thatCol of that, copy features and descriptors if any....
An exception thrown when one tries to fetch the value of an unexisting parameter.
Matrix features
features of points in the cloud
The superclass of classes that are constructed using generic parameters. This class provides the para...
const M::mapped_type & get(const M &m, const typename M::key_type &k)
Parametrizable::Parameters Parameters
void conservativeResize(Index pointCount)
Resize the cloud to pointCount points, conserving existing ones.
static T anyabs(const T &v)
MinDistDataPointsFilter(const Parameters ¶ms=Parameters())
Constructor, uses parameter interface.
Functions and classes that are not dependant on scalar type are defined in this namespace.
virtual void inPlaceFilter(DataPoints &cloud)
Apply these filters to a point cloud without copying.
virtual DataPoints filter(const DataPoints &input)
Apply filters to input point cloud. This is the non-destructive version and returns a copy.
mp2p_icp
Author(s):
autogenerated on Thu Dec 26 2024 03:48:12