Go to the documentation of this file.
44 PointMatcher<T>::DataPointsFilter(
"FixStepSamplingDataPointsFilter",
67 inPlaceFilter(output);
75 const int iStep(
step);
76 const int nbPointsIn = cloud.
features.cols();
77 const int phase(rand() % iStep);
80 for (
int i = phase; i < nbPointsIn; i += iStep)
88 const double deltaStep(startStep * stepMult - startStep);
90 if (deltaStep < 0 &&
step < endStep)
92 if (deltaStep > 0 &&
step > endStep)
Systematic sampling, with variation over time.
#define LOG_INFO_STREAM(args)
Functions and classes that are dependant on scalar type are defined in this templatized class.
virtual void init()
Init this filter.
virtual DataPoints filter(const DataPoints &input)
Apply filters to input point cloud. This is the non-destructive version and returns a copy.
void setColFrom(Index thisCol, const DataPoints &that, Index thatCol)
Set column thisCol equal to column thatCol of that, copy features and descriptors if any....
Matrix features
features of points in the cloud
The superclass of classes that are constructed using generic parameters. This class provides the para...
const M::mapped_type & get(const M &m, const typename M::key_type &k)
void conservativeResize(Index pointCount)
Resize the cloud to pointCount points, conserving existing ones.
Parametrizable::Parameters Parameters
virtual void inPlaceFilter(DataPoints &cloud)
Apply these filters to a point cloud without copying.
FixStepSamplingDataPointsFilter(const Parameters ¶ms=Parameters())
mp2p_icp
Author(s):
autogenerated on Thu Dec 26 2024 03:48:11