5 from skimage.morphology
import binary_closing
9 where = np.argwhere(mask)
10 (y_start, x_start), (y_stop, x_stop) = where.min(0), where.max(0) + 1
11 return img[y_start:y_stop, x_start:x_stop]
16 for i
in range(n_times):
17 selem = np.ones((S[0] * (n_times - i), S[1] * (n_times - i)))
18 mask = binary_closing(mask, selem=selem)