1 from __future__
import print_function
6 from chainercv.chainer_experimental.datasets.sliceable
import GetterDataset
14 super(DetectionDataset, self).
__init__()
17 class_names_path = osp.join(root_dir,
'class_names.txt')
18 with open(class_names_path,
'r')
as f:
19 class_names = f.readlines()
26 imgs_dir = osp.join(root_dir,
'JPEGImages')
27 class_labels_dir = osp.join(root_dir,
'SegmentationClass')
28 instance_labels_dir = osp.join(root_dir,
'SegmentationObject')
29 for img_
in sorted(os.listdir(imgs_dir)):
30 img_path = osp.join(imgs_dir, img_)
31 basename = img_.rstrip(
'.jpg')
32 class_label_path = osp.join(
33 class_labels_dir, basename +
'.npy')
34 instance_label_path = osp.join(
35 instance_labels_dir, basename +
'.npy')
36 self.
_imgs.append(img_path)
39 self.add_getter((
'img',
'bbox',
'label'), self.
_get_example)
42 return len(self.
_imgs)
45 img_path = self.
_imgs[i]
49 img = cv2.imread(img_path)
50 assert img.dtype == np.uint8
53 class_label = np.load(class_label_path)
54 assert class_label.dtype == np.int32
55 assert class_label.ndim == 2
57 instance_label = np.load(instance_label_path)
58 assert instance_label.dtype == np.int32
59 assert instance_label.ndim == 2
61 assert img.shape[:2] == class_label.shape == instance_label.shape
64 R = np.max(instance_label)
65 label = np.zeros((R, ), dtype=np.int32)
66 bbox = np.zeros((R, 4), dtype=np.float32)
67 for inst_lbl
in range(R):
70 inst_mask = instance_label == inst_lbl
71 cls_lbl = np.argmax(np.bincount(class_label[inst_mask]))
72 label[inst_lbl] = cls_lbl - 1
73 yind, xind = np.where(inst_mask)
78 bbox[inst_lbl] = np.array(
79 [ymin, xmin, ymax, xmax], dtype=np.float32)
81 img = img.transpose((2, 0, 1))
82 return img, bbox, label