1 from __future__
import division
15 class_names = np.array([
19 class_names.setflags(write=0)
28 mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
32 def __init__(self, root_dir, split, aug=False):
34 assert split
in [
'train',
'test']
40 for date_dir
in sorted(os.listdir(self.
root_dir)):
41 date_dir = osp.join(self.
root_dir, date_dir)
42 split_dir = osp.join(date_dir, split)
43 for files_dir
in sorted(os.listdir(split_dir)):
44 files_dir = osp.join(split_dir, files_dir)
45 files = set(os.listdir(files_dir))
46 assert self.
_files.issubset(files), (
47 'In {}: File set does not match.\n'
48 'Expected: {}\nActual: {}'
59 image_file = osp.join(files_dir,
'image.png')
60 image = skimage.io.imread(image_file)
61 assert image.dtype == np.uint8
62 assert image.ndim == 3
64 depth_file = osp.join(files_dir,
'depth.npz')
65 depth = np.load(depth_file)[
'arr_0']
66 depth[depth == 0] = np.nan
67 if depth.dtype == np.uint16:
68 depth = depth.astype(np.float32)
70 depth_keep = ~np.isnan(depth)
71 depth[depth_keep] = np.maximum(depth[depth_keep], self.
min_value)
72 depth[depth_keep] = np.minimum(depth[depth_keep], self.
max_value)
73 assert depth.dtype == np.float32
74 assert depth.ndim == 2
76 label_file = osp.join(files_dir,
'label.png')
77 with open(label_file,
'r')
as f:
78 label = np.asarray(PIL.Image.open(f)).astype(np.int32)
79 assert label.dtype == np.int32
80 assert label.ndim == 2
82 depth_gt_file = osp.join(files_dir,
'depth_gt.npz')
83 depth_gt = np.load(depth_gt_file)[
'arr_0']
84 depth_gt[depth_gt == 0] = np.nan
85 if depth_gt.dtype == np.uint16:
86 depth_gt = depth_gt.astype(np.float32)
88 depth_gt_keep = ~np.isnan(depth_gt)
89 depth_gt[depth_gt_keep] = np.maximum(
91 depth_gt[depth_gt_keep] = np.minimum(
93 assert depth_gt.dtype == np.float32
94 assert depth_gt.ndim == 2
102 if np.random.uniform() < proba_color:
103 image = image.astype(np.float64)
104 image[:, :, 0] += np.random.uniform() * 100 - 50
105 image[:, :, 1] += np.random.uniform() * 100 - 50
106 image[:, :, 2] += np.random.uniform() * 100 - 50
107 image = np.clip(image, 0, 255)
108 image = image.astype(np.uint8)
110 if np.random.uniform() < proba_color:
111 image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
112 image = image.astype(np.float64)
113 image[:, :, 1] *= np.random.uniform() * 1.5 + 0.5
114 image[:, :, 2] *= np.random.uniform() * 1.5 + 0.5
115 image = np.clip(image, 0, 255)
116 image = image.astype(np.uint8)
117 image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
119 if np.random.uniform() < proba_color:
120 image = cv2.GaussianBlur(image, (5, 5), np.random.uniform())
122 if np.random.uniform() < proba_color:
123 image = image.astype(np.float64)
126 image[:, :, 0] += np.random.normal(
127 0, np.random.uniform() * 0.1 * 255, (h, w))
128 image[:, :, 1] += np.random.normal(
129 0, np.random.uniform() * 0.1 * 255, (h, w))
130 image[:, :, 2] += np.random.normal(
131 0, np.random.uniform() * 0.1 * 255, (h, w))
132 image = np.clip(image, 0, 255)
133 image = image.astype(np.uint8)
136 if np.random.uniform() < 0.3:
137 noise_rate = np.random.uniform() * 0.25 + 0.05
139 np.random.rand(depth.shape[0], depth.shape[1]) < noise_rate
143 if np.random.uniform() < 0.5:
144 image = np.fliplr(image)
145 depth = np.fliplr(depth)
146 label = np.fliplr(label)
147 depth_gt = np.fliplr(depth_gt)
148 if np.random.uniform() < 0.5:
149 image = np.flipud(image)
150 depth = np.flipud(depth)
151 label = np.flipud(label)
152 depth_gt = np.flipud(depth_gt)
153 if np.random.uniform() < 0.5:
154 angle = (np.random.uniform() * 180) - 90
155 image = self.
rotate_image(image, angle, cv2.INTER_LINEAR)
157 label = self.
rotate_image(label, angle, cv2.INTER_NEAREST)
159 depth_gt, angle, cv2.INTER_LINEAR)
161 return image, depth, label, depth_gt, idx
164 rot_mat = cv2.getRotationMatrix2D(
165 center=(in_img.shape[1] / 2, in_img.shape[0] / 2),
166 angle=angle, scale=1)
167 rot_img = cv2.warpAffine(
168 src=in_img, M=rot_mat,
169 dsize=(in_img.shape[1], in_img.shape[0]), flags=flags)
173 rot_mat = cv2.getRotationMatrix2D(
174 center=(in_img.shape[1] / 2, in_img.shape[0] / 2),
175 angle=angle, scale=1)
176 ones = np.ones(in_img.shape, dtype=np.int32)
177 rot_keep = cv2.warpAffine(
179 dsize=(in_img.shape[1], in_img.shape[0]),
180 flags=cv2.INTER_NEAREST)
181 rot_keep = rot_keep.astype(np.bool)
182 rot_img = cv2.warpAffine(
183 src=in_img, M=rot_mat,
184 dsize=(in_img.shape[1], in_img.shape[0]), flags=flags)
185 rot_img[rot_keep ==
False] = np.nan