1 from __future__
import print_function
6 from chainercv.chainer_experimental.datasets.sliceable
import GetterDataset
10 import xml.etree.ElementTree
as ET
15 super(BboxDetectionDataset, self).
__init__()
18 class_names_path = osp.join(root_dir,
'class_names.txt')
19 with open(class_names_path,
'r')
as f:
20 class_names = f.readlines()
27 imgs_dir = osp.join(root_dir,
'JPEGImages')
28 annotation_dir = osp.join(root_dir,
'Annotations')
30 for img_
in sorted(os.listdir(imgs_dir)):
31 img_path = osp.join(imgs_dir, img_)
32 basename = img_.rstrip(
'.jpg')
33 annotation_path = osp.join(annotation_dir, basename +
'.xml')
34 self.
_imgs.append(img_path)
37 self.add_getter((
'img',
'bbox',
'label'), self.
_get_example)
40 return len(self.
_imgs)
43 img_path = self.
_imgs[i]
46 img = cv2.imread(img_path)
47 assert img.dtype == np.uint8
53 tree = ET.parse(annotation_path)
56 for obj
in root.findall(
"object"):
57 label.append(np.where(self.
fg_class_names == obj.find(
"name").text)[0][0])
58 bbox.append([obj.find(
"bndbox").find(
"ymin").text,
59 obj.find(
"bndbox").find(
"xmin").text,
60 obj.find(
"bndbox").find(
"ymax").text,
61 obj.find(
"bndbox").find(
"xmax").text])
63 label = np.array(label, dtype=np.int32)
64 bbox = np.array(bbox, dtype=np.float32)
67 img = img.transpose((2, 0, 1))
68 return img, bbox, label