14 bin_index = int(msg.true_depth / grid)
15 if bin_index
not in bins:
17 err = msg.true_depth - msg.observed_depth
18 bins[bin_index].append((msg, err))
19 for bin_index, msg_and_errs
in bins.items():
20 if len(msg_and_errs) < 5:
22 print(
"Bin: {0}m ~ {1}m".format(grid * bin_index, grid * (bin_index + 1)))
23 print(
" Sample:", len(msg_and_errs))
24 errs = [err
for (msg, err)
in msg_and_errs]
25 mean = np.mean(errs, axis=0)
26 stddev = np.std(errs, axis=0)
28 print(
" Stddev:", stddev)
29 data.xs.append(msg.true_depth)
30 data.ys.append(msg.observed_depth)
32 writer.writerow([msg.true_depth, msg.observed_depth])
35 if __name__ ==
"__main__":
36 rospy.init_node(
"plot_depth_error")
37 csv_path = rospy.get_param(
"~csv_path",
"output.csv")
38 pub = rospy.Publisher(
"~scatter", PlotData, queue_size=1)
39 f = open(csv_path,
"w")
40 writer = csv.writer(f)
41 sub = rospy.Subscriber(
"/depth_image_error/output", DepthErrorResult, callback)