problem.cc
Go to the documentation of this file.
1 /******************************************************************************
2 Copyright (c) 2017, Alexander W Winkler. All rights reserved.
3 
4 Redistribution and use in source and binary forms, with or without
5 modification, are permitted provided that the following conditions are met:
6 
7 * Redistributions of source code must retain the above copyright notice, this
8  list of conditions and the following disclaimer.
9 
10 * Redistributions in binary form must reproduce the above copyright notice,
11  this list of conditions and the following disclaimer in the documentation
12  and/or other materials provided with the distribution.
13 
14 * Neither the name of the copyright holder nor the names of its
15  contributors may be used to endorse or promote products derived from
16  this software without specific prior written permission.
17 
18 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 ******************************************************************************/
29 
30 #include <ifopt/problem.h>
31 #include <iostream>
32 #include <iomanip>
33 
34 
35 namespace ifopt {
36 
38  :constraints_("constraint-sets", false),
39  costs_("cost-terms", true)
40 {
41  variables_ = std::make_shared<Composite>("variable-sets", false);
42 }
43 
44 void
46 {
47  variables_->AddComponent(variable_set);
48 }
49 
50 void
52 {
53  constraint_set->LinkWithVariables(variables_);
54  constraints_.AddComponent(constraint_set);
55 }
56 
57 void
59 {
60  cost_set->LinkWithVariables(variables_);
61  costs_.AddComponent(cost_set);
62 }
63 
64 int
66 {
67  return variables_->GetRows();
68 }
69 
72 {
73  return variables_->GetBounds();
74 }
75 
78 {
79  return variables_->GetValues();
80 }
81 
82 void
83 Problem::SetVariables (const double* x)
84 {
85  variables_->SetVariables(ConvertToEigen(x));
86 }
87 
88 double
89 Problem::EvaluateCostFunction (const double* x)
90 {
91  VectorXd g = VectorXd::Zero(1);
92  if (HasCostTerms()) {
93  SetVariables(x);
94  g = costs_.GetValues();
95  }
96  return g(0);
97 }
98 
100 Problem::EvaluateCostFunctionGradient (const double* x, bool use_finite_difference_approximation, double epsilon)
101 {
103  Jacobian jac = Jacobian(1,n);
104  if (HasCostTerms()) {
105  if(use_finite_difference_approximation) {
106  double step_size = epsilon;
107 
108  // calculate forward difference by disturbing each optimization variable
109  double g = EvaluateCostFunction(x);
110  std::vector<double> x_new(x, x + n);
111  for (int i=0; i<n; ++i) {
112  x_new[i] += step_size; // disturb
113  double g_new = EvaluateCostFunction(x_new.data());
114  jac.coeffRef(0,i) = (g_new - g)/step_size;
115  x_new[i] = x[i]; // reset for next iteration
116  }
117  } else {
118  SetVariables(x);
119  jac = costs_.GetJacobian();
120  }
121  }
122 
123  return jac.row(0).transpose();
124 }
125 
128 {
129  return constraints_.GetBounds();
130 }
131 
132 int
134 {
135  return GetBoundsOnConstraints().size();
136 }
137 
139 Problem::EvaluateConstraints (const double* x)
140 {
141  SetVariables(x);
142  return constraints_.GetValues();
143 }
144 
145 bool
146 Problem::HasCostTerms () const
147 {
148  return costs_.GetRows()>0;
149 }
150 
151 void
152 Problem::EvalNonzerosOfJacobian (const double* x, double* values)
153 {
156 
157  jac.makeCompressed(); // so the valuePtr() is dense and accurate
158  std::copy(jac.valuePtr(), jac.valuePtr() + jac.nonZeros(), values);
159 }
160 
163 {
164  return constraints_.GetJacobian();
165 }
166 
169 {
170  return costs_.GetJacobian();
171 }
172 
173 void
175 {
176  x_prev.push_back(variables_->GetValues());
177 }
178 
181 {
182  return variables_;
183 }
184 
185 void
186 Problem::SetOptVariables (int iter)
187 {
188  variables_->SetVariables(x_prev.at(iter));
189 }
190 
191 void
193 {
194  variables_->SetVariables(x_prev.at(GetIterationCount()-1));
195 }
196 
197 void
198 Problem::PrintCurrent() const
199 {
200  using namespace std;
201  cout << "\n"
202  << "************************************************************\n"
203  << " IFOPT - Interface to Nonlinear Optimizers (v2.0)\n"
204  << " \u00a9 Alexander W. Winkler\n"
205  << " https://github.com/ethz-adrl/ifopt\n"
206  << "************************************************************"
207  << "\n"
208  << "Legend:\n"
209  << "c - number of variables, constraints or cost terms" << std::endl
210  << "i - indices of this set in overall problem" << std::endl
211  << "v - number of [violated variable- or constraint-bounds] or [cost term value]"
212  << "\n\n"
213  << std::right
214  << std::setw(33) << ""
215  << std::setw(5) << "c "
216  << std::setw(16) << "i "
217  << std::setw(11) << "v "
218  << std::left
219  << "\n";
220 
221  variables_->PrintAll();
223  costs_.PrintAll();
224 };
225 
227 Problem::ConvertToEigen(const double* x) const
228 {
229  return Eigen::Map<const VectorXd>(x,GetNumberOfOptimizationVariables());
230 }
231 
232 } /* namespace opt */
233 
ifopt::Problem::GetJacobianOfCosts
Jacobian GetJacobianOfCosts() const
The sparse-matrix representation of Jacobian of the costs.
Definition: problem.cc:195
ifopt::Problem::GetNumberOfOptimizationVariables
int GetNumberOfOptimizationVariables() const
The number of optimization variables.
Definition: problem.cc:92
ifopt::Problem::EvaluateCostFunction
double EvaluateCostFunction(const double *x)
The scalar cost for current optimization variables x.
Definition: problem.cc:116
ifopt::Composite::PrintAll
void PrintAll() const
Definition: composite.cc:239
ifopt::Problem::SetVariables
void SetVariables(const double *x)
Updates the variables with the values of the raw pointer x.
Definition: problem.cc:110
ifopt::Problem::EvaluateCostFunctionGradient
VectorXd EvaluateCostFunctionGradient(const double *x, bool use_finite_difference_approximation=false, double epsilon=std::numeric_limits< double >::epsilon())
The column-vector of derivatives of the cost w.r.t. each variable.
Definition: problem.cc:127
ifopt::Composite::AddComponent
void AddComponent(const Component::Ptr &)
Adds a component to this composite.
Definition: composite.cc:131
ifopt::Problem::VecBound
Component::VecBound VecBound
Definition: problem.h:126
ifopt::Problem::GetBoundsOnConstraints
VecBound GetBoundsOnConstraints() const
The upper and lower bound of each individual constraint.
Definition: problem.cc:154
ifopt::Problem::HasCostTerms
bool HasCostTerms() const
True if the optimization problem includes a cost, false if merely a feasibility problem is defined.
Definition: problem.cc:173
ifopt::Problem::VectorXd
Component::VectorXd VectorXd
Definition: problem.h:128
ifopt::Problem::EvalNonzerosOfJacobian
void EvalNonzerosOfJacobian(const double *x, double *values)
Extracts those entries from constraint Jacobian that are not zero.
Definition: problem.cc:179
ifopt::Problem::AddConstraintSet
void AddConstraintSet(ConstraintSet::Ptr constraint_set)
Add a set of multiple constraints to the optimization problem.
Definition: problem.cc:78
ifopt::Problem::x_prev
std::vector< VectorXd > x_prev
the pure variables for every iteration.
Definition: problem.h:301
ifopt::Composite::GetBounds
VecBound GetBounds() const override
Returns the "bounds" of this component.
Definition: composite.cc:221
ifopt::Problem::SetOptVariablesFinal
void SetOptVariablesFinal()
Sets the optimization variables to those of the final iteration.
Definition: problem.cc:219
ifopt::Problem::Jacobian
Component::Jacobian Jacobian
Definition: problem.h:127
problem.h
ifopt::Problem::GetNumberOfConstraints
int GetNumberOfConstraints() const
The number of individual constraints.
Definition: problem.cc:160
ifopt::ConstraintSet::variables_
VariablesPtr variables_
Definition: constraint_set.h:169
ifopt::Problem::GetJacobianOfConstraints
Jacobian GetJacobianOfConstraints() const
The sparse-matrix representation of Jacobian of the constraints.
Definition: problem.cc:189
ifopt::Problem::EvaluateConstraints
VectorXd EvaluateConstraints(const double *x)
Each constraint value g(x) for current optimization variables x.
Definition: problem.cc:166
ifopt::Problem::Problem
Problem()
Creates a optimization problem with no variables, costs or constraints.
Definition: problem.cc:64
ifopt::Problem::costs_
Composite costs_
Definition: problem.h:299
ifopt::Problem::SetOptVariables
void SetOptVariables(int iter)
Sets the optimization variables to those at iteration iter.
Definition: problem.cc:213
ifopt::Problem::GetVariableValues
VectorXd GetVariableValues() const
The current value of the optimization variables.
Definition: problem.cc:104
ifopt::Problem::GetBoundsOnOptimizationVariables
VecBound GetBoundsOnOptimizationVariables() const
The maximum and minimum value each optimization variable is allowed to have.
Definition: problem.cc:98
ifopt::Problem::AddCostSet
void AddCostSet(CostTerm::Ptr cost_set)
Add a cost term to the optimization problem.
Definition: problem.cc:85
ifopt::Composite::Ptr
std::shared_ptr< Composite > Ptr
Definition: composite.h:164
ifopt::Composite::GetJacobian
Jacobian GetJacobian() const override
Returns derivatives of each row w.r.t. the variables.
Definition: composite.cc:191
ifopt::Problem::GetIterationCount
int GetIterationCount() const
The number of iterations it took to solve the problem.
Definition: problem.h:271
ifopt::Component::Ptr
std::shared_ptr< Component > Ptr
Definition: composite.h:65
ifopt::Problem::AddVariableSet
void AddVariableSet(VariableSet::Ptr variable_set)
Add one individual set of variables to the optimization problem.
Definition: problem.cc:72
ifopt::Problem::variables_
Composite::Ptr variables_
Definition: problem.h:294
ifopt
common namespace for all elements in this library.
Definition: bounds.h:33
ifopt::Problem::SaveCurrent
void SaveCurrent()
Saves the current values of the optimization variables in x_prev.
Definition: problem.cc:201
ifopt::Component::GetRows
int GetRows() const
Returns the number of rows of this component.
Definition: composite.cc:71
ifopt::ConstraintSet::Ptr
std::shared_ptr< ConstraintSet > Ptr
Definition: constraint_set.h:107
ifopt::Problem::GetOptVariables
Composite::Ptr GetOptVariables() const
Read/write access to the current optimization variables.
Definition: problem.cc:207
ifopt::Problem::PrintCurrent
void PrintCurrent() const
Prints the variables, costs and constraints.
Definition: problem.cc:225
ifopt::Composite::GetValues
VectorXd GetValues() const override
Returns the "values" of whatever this component represents.
Definition: composite.cc:163
ifopt::Problem::ConvertToEigen
VectorXd ConvertToEigen(const double *x) const
Definition: problem.cc:254
ifopt::Problem::constraints_
Composite constraints_
Definition: problem.h:298


ifopt
Author(s): Alexander W. Winkler
autogenerated on Thu Sep 15 2022 02:14:55