RSS.cpp
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2015, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #include <hpp/fcl/BV/RSS.h>
40 #include <hpp/fcl/internal/tools.h>
41 #include <hpp/fcl/collision_data.h>
42 
43 #include <iostream>
44 
45 namespace hpp {
46 namespace fcl {
47 
50  if (val < a)
51  val = a;
52  else if (val > b)
53  val = b;
54 }
55 
68  FCL_REAL A_dot_B, FCL_REAL A_dot_T, FCL_REAL B_dot_T) {
69  FCL_REAL denom = 1 - A_dot_B * A_dot_B;
70 
71  if (denom == 0)
72  t = 0;
73  else {
74  t = (A_dot_T - B_dot_T * A_dot_B) / denom;
75  clipToRange(t, 0, a);
76  }
77 
78  u = t * A_dot_B - B_dot_T;
79  if (u < 0) {
80  u = 0;
81  t = A_dot_T;
82  clipToRange(t, 0, a);
83  } else if (u > b) {
84  u = b;
85  t = u * A_dot_B + A_dot_T;
86  clipToRange(t, 0, a);
87  }
88 }
89 
95 bool inVoronoi(FCL_REAL a, FCL_REAL b, FCL_REAL Anorm_dot_B,
96  FCL_REAL Anorm_dot_T, FCL_REAL A_dot_B, FCL_REAL A_dot_T,
97  FCL_REAL B_dot_T) {
98  if (fabs(Anorm_dot_B) < 1e-7) return false;
99 
100  FCL_REAL t, u, v;
101 
102  u = -Anorm_dot_T / Anorm_dot_B;
103  clipToRange(u, 0, b);
104 
105  t = u * A_dot_B + A_dot_T;
106  clipToRange(t, 0, a);
107 
108  v = t * A_dot_B - B_dot_T;
109 
110  if (Anorm_dot_B > 0) {
111  if (v > (u + 1e-7)) return true;
112  } else {
113  if (v < (u - 1e-7)) return true;
114  }
115  return false;
116 }
117 
121 FCL_REAL rectDistance(const Matrix3f& Rab, Vec3f const& Tab,
122  const FCL_REAL a[2], const FCL_REAL b[2], Vec3f* P = NULL,
123  Vec3f* Q = NULL) {
124  FCL_REAL A0_dot_B0, A0_dot_B1, A1_dot_B0, A1_dot_B1;
125 
126  A0_dot_B0 = Rab(0, 0);
127  A0_dot_B1 = Rab(0, 1);
128  A1_dot_B0 = Rab(1, 0);
129  A1_dot_B1 = Rab(1, 1);
130 
131  FCL_REAL aA0_dot_B0, aA0_dot_B1, aA1_dot_B0, aA1_dot_B1;
132  FCL_REAL bA0_dot_B0, bA0_dot_B1, bA1_dot_B0, bA1_dot_B1;
133 
134  aA0_dot_B0 = a[0] * A0_dot_B0;
135  aA0_dot_B1 = a[0] * A0_dot_B1;
136  aA1_dot_B0 = a[1] * A1_dot_B0;
137  aA1_dot_B1 = a[1] * A1_dot_B1;
138  bA0_dot_B0 = b[0] * A0_dot_B0;
139  bA1_dot_B0 = b[0] * A1_dot_B0;
140  bA0_dot_B1 = b[1] * A0_dot_B1;
141  bA1_dot_B1 = b[1] * A1_dot_B1;
142 
143  Vec3f Tba(Rab.transpose() * Tab);
144 
145  Vec3f S;
146  FCL_REAL t, u;
147 
148  // determine if any edge pair contains the closest points
149 
150  FCL_REAL ALL_x, ALU_x, AUL_x, AUU_x;
151  FCL_REAL BLL_x, BLU_x, BUL_x, BUU_x;
152  FCL_REAL LA1_lx, LA1_ux, UA1_lx, UA1_ux, LB1_lx, LB1_ux, UB1_lx, UB1_ux;
153 
154  ALL_x = -Tba[0];
155  ALU_x = ALL_x + aA1_dot_B0;
156  AUL_x = ALL_x + aA0_dot_B0;
157  AUU_x = ALU_x + aA0_dot_B0;
158 
159  if (ALL_x < ALU_x) {
160  LA1_lx = ALL_x;
161  LA1_ux = ALU_x;
162  UA1_lx = AUL_x;
163  UA1_ux = AUU_x;
164  } else {
165  LA1_lx = ALU_x;
166  LA1_ux = ALL_x;
167  UA1_lx = AUU_x;
168  UA1_ux = AUL_x;
169  }
170 
171  BLL_x = Tab[0];
172  BLU_x = BLL_x + bA0_dot_B1;
173  BUL_x = BLL_x + bA0_dot_B0;
174  BUU_x = BLU_x + bA0_dot_B0;
175 
176  if (BLL_x < BLU_x) {
177  LB1_lx = BLL_x;
178  LB1_ux = BLU_x;
179  UB1_lx = BUL_x;
180  UB1_ux = BUU_x;
181  } else {
182  LB1_lx = BLU_x;
183  LB1_ux = BLL_x;
184  UB1_lx = BUU_x;
185  UB1_ux = BUL_x;
186  }
187 
188  // UA1, UB1
189 
190  if ((UA1_ux > b[0]) && (UB1_ux > a[0])) {
191  if (((UA1_lx > b[0]) ||
192  inVoronoi(b[1], a[1], A1_dot_B0, aA0_dot_B0 - b[0] - Tba[0], A1_dot_B1,
193  aA0_dot_B1 - Tba[1], -Tab[1] - bA1_dot_B0)) &&
194  ((UB1_lx > a[0]) ||
195  inVoronoi(a[1], b[1], A0_dot_B1, Tab[0] + bA0_dot_B0 - a[0], A1_dot_B1,
196  Tab[1] + bA1_dot_B0, Tba[1] - aA0_dot_B1))) {
197  segCoords(t, u, a[1], b[1], A1_dot_B1, Tab[1] + bA1_dot_B0,
198  Tba[1] - aA0_dot_B1);
199 
200  S[0] = Tab[0] + Rab(0, 0) * b[0] + Rab(0, 1) * u - a[0];
201  S[1] = Tab[1] + Rab(1, 0) * b[0] + Rab(1, 1) * u - t;
202  S[2] = Tab[2] + Rab(2, 0) * b[0] + Rab(2, 1) * u;
203 
204  if (P && Q) {
205  *P << a[0], t, 0;
206  *Q = S + (*P);
207  }
208 
209  return S.norm();
210  }
211  }
212 
213  // UA1, LB1
214 
215  if ((UA1_lx < 0) && (LB1_ux > a[0])) {
216  if (((UA1_ux < 0) || inVoronoi(b[1], a[1], -A1_dot_B0, Tba[0] - aA0_dot_B0,
217  A1_dot_B1, aA0_dot_B1 - Tba[1], -Tab[1])) &&
218  ((LB1_lx > a[0]) ||
219  inVoronoi(a[1], b[1], A0_dot_B1, Tab[0] - a[0], A1_dot_B1, Tab[1],
220  Tba[1] - aA0_dot_B1))) {
221  segCoords(t, u, a[1], b[1], A1_dot_B1, Tab[1], Tba[1] - aA0_dot_B1);
222 
223  S[0] = Tab[0] + Rab(0, 1) * u - a[0];
224  S[1] = Tab[1] + Rab(1, 1) * u - t;
225  S[2] = Tab[2] + Rab(2, 1) * u;
226 
227  if (P && Q) {
228  *P << a[0], t, 0;
229  *Q = S + (*P);
230  }
231 
232  return S.norm();
233  }
234  }
235 
236  // LA1, UB1
237 
238  if ((LA1_ux > b[0]) && (UB1_lx < 0)) {
239  if (((LA1_lx > b[0]) ||
240  inVoronoi(b[1], a[1], A1_dot_B0, -Tba[0] - b[0], A1_dot_B1, -Tba[1],
241  -Tab[1] - bA1_dot_B0)) &&
242  ((UB1_ux < 0) || inVoronoi(a[1], b[1], -A0_dot_B1, -Tab[0] - bA0_dot_B0,
243  A1_dot_B1, Tab[1] + bA1_dot_B0, Tba[1]))) {
244  segCoords(t, u, a[1], b[1], A1_dot_B1, Tab[1] + bA1_dot_B0, Tba[1]);
245 
246  S[0] = Tab[0] + Rab(0, 0) * b[0] + Rab(0, 1) * u;
247  S[1] = Tab[1] + Rab(1, 0) * b[0] + Rab(1, 1) * u - t;
248  S[2] = Tab[2] + Rab(2, 0) * b[0] + Rab(2, 1) * u;
249 
250  if (P && Q) {
251  *P << 0, t, 0;
252  *Q = S + (*P);
253  }
254 
255  return S.norm();
256  }
257  }
258 
259  // LA1, LB1
260 
261  if ((LA1_lx < 0) && (LB1_lx < 0)) {
262  if (((LA1_ux < 0) || inVoronoi(b[1], a[1], -A1_dot_B0, Tba[0], A1_dot_B1,
263  -Tba[1], -Tab[1])) &&
264  ((LB1_ux < 0) || inVoronoi(a[1], b[1], -A0_dot_B1, -Tab[0], A1_dot_B1,
265  Tab[1], Tba[1]))) {
266  segCoords(t, u, a[1], b[1], A1_dot_B1, Tab[1], Tba[1]);
267 
268  S[0] = Tab[0] + Rab(0, 1) * u;
269  S[1] = Tab[1] + Rab(1, 1) * u - t;
270  S[2] = Tab[2] + Rab(2, 1) * u;
271 
272  if (P && Q) {
273  *P << 0, t, 0;
274  *Q = S + (*P);
275  }
276 
277  return S.norm();
278  }
279  }
280 
281  FCL_REAL ALL_y, ALU_y, AUL_y, AUU_y;
282 
283  ALL_y = -Tba[1];
284  ALU_y = ALL_y + aA1_dot_B1;
285  AUL_y = ALL_y + aA0_dot_B1;
286  AUU_y = ALU_y + aA0_dot_B1;
287 
288  FCL_REAL LA1_ly, LA1_uy, UA1_ly, UA1_uy, LB0_lx, LB0_ux, UB0_lx, UB0_ux;
289 
290  if (ALL_y < ALU_y) {
291  LA1_ly = ALL_y;
292  LA1_uy = ALU_y;
293  UA1_ly = AUL_y;
294  UA1_uy = AUU_y;
295  } else {
296  LA1_ly = ALU_y;
297  LA1_uy = ALL_y;
298  UA1_ly = AUU_y;
299  UA1_uy = AUL_y;
300  }
301 
302  if (BLL_x < BUL_x) {
303  LB0_lx = BLL_x;
304  LB0_ux = BUL_x;
305  UB0_lx = BLU_x;
306  UB0_ux = BUU_x;
307  } else {
308  LB0_lx = BUL_x;
309  LB0_ux = BLL_x;
310  UB0_lx = BUU_x;
311  UB0_ux = BLU_x;
312  }
313 
314  // UA1, UB0
315 
316  if ((UA1_uy > b[1]) && (UB0_ux > a[0])) {
317  if (((UA1_ly > b[1]) ||
318  inVoronoi(b[0], a[1], A1_dot_B1, aA0_dot_B1 - Tba[1] - b[1], A1_dot_B0,
319  aA0_dot_B0 - Tba[0], -Tab[1] - bA1_dot_B1)) &&
320  ((UB0_lx > a[0]) ||
321  inVoronoi(a[1], b[0], A0_dot_B0, Tab[0] - a[0] + bA0_dot_B1, A1_dot_B0,
322  Tab[1] + bA1_dot_B1, Tba[0] - aA0_dot_B0))) {
323  segCoords(t, u, a[1], b[0], A1_dot_B0, Tab[1] + bA1_dot_B1,
324  Tba[0] - aA0_dot_B0);
325 
326  S[0] = Tab[0] + Rab(0, 1) * b[1] + Rab(0, 0) * u - a[0];
327  S[1] = Tab[1] + Rab(1, 1) * b[1] + Rab(1, 0) * u - t;
328  S[2] = Tab[2] + Rab(2, 1) * b[1] + Rab(2, 0) * u;
329 
330  if (P && Q) {
331  *P << a[0], t, 0;
332  *Q = S + (*P);
333  }
334 
335  return S.norm();
336  }
337  }
338 
339  // UA1, LB0
340 
341  if ((UA1_ly < 0) && (LB0_ux > a[0])) {
342  if (((UA1_uy < 0) || inVoronoi(b[0], a[1], -A1_dot_B1, Tba[1] - aA0_dot_B1,
343  A1_dot_B0, aA0_dot_B0 - Tba[0], -Tab[1])) &&
344  ((LB0_lx > a[0]) ||
345  inVoronoi(a[1], b[0], A0_dot_B0, Tab[0] - a[0], A1_dot_B0, Tab[1],
346  Tba[0] - aA0_dot_B0))) {
347  segCoords(t, u, a[1], b[0], A1_dot_B0, Tab[1], Tba[0] - aA0_dot_B0);
348 
349  S[0] = Tab[0] + Rab(0, 0) * u - a[0];
350  S[1] = Tab[1] + Rab(1, 0) * u - t;
351  S[2] = Tab[2] + Rab(2, 0) * u;
352 
353  if (P && Q) {
354  *P << a[0], t, 0;
355  *Q = S + (*P);
356  }
357 
358  return S.norm();
359  }
360  }
361 
362  // LA1, UB0
363 
364  if ((LA1_uy > b[1]) && (UB0_lx < 0)) {
365  if (((LA1_ly > b[1]) ||
366  inVoronoi(b[0], a[1], A1_dot_B1, -Tba[1] - b[1], A1_dot_B0, -Tba[0],
367  -Tab[1] - bA1_dot_B1)) &&
368 
369  ((UB0_ux < 0) || inVoronoi(a[1], b[0], -A0_dot_B0, -Tab[0] - bA0_dot_B1,
370  A1_dot_B0, Tab[1] + bA1_dot_B1, Tba[0]))) {
371  segCoords(t, u, a[1], b[0], A1_dot_B0, Tab[1] + bA1_dot_B1, Tba[0]);
372 
373  S[0] = Tab[0] + Rab(0, 1) * b[1] + Rab(0, 0) * u;
374  S[1] = Tab[1] + Rab(1, 1) * b[1] + Rab(1, 0) * u - t;
375  S[2] = Tab[2] + Rab(2, 1) * b[1] + Rab(2, 0) * u;
376 
377  if (P && Q) {
378  *P << 0, t, 0;
379  *Q = S + (*P);
380  }
381 
382  return S.norm();
383  }
384  }
385 
386  // LA1, LB0
387 
388  if ((LA1_ly < 0) && (LB0_lx < 0)) {
389  if (((LA1_uy < 0) || inVoronoi(b[0], a[1], -A1_dot_B1, Tba[1], A1_dot_B0,
390  -Tba[0], -Tab[1])) &&
391  ((LB0_ux < 0) || inVoronoi(a[1], b[0], -A0_dot_B0, -Tab[0], A1_dot_B0,
392  Tab[1], Tba[0]))) {
393  segCoords(t, u, a[1], b[0], A1_dot_B0, Tab[1], Tba[0]);
394 
395  S[0] = Tab[0] + Rab(0, 0) * u;
396  S[1] = Tab[1] + Rab(1, 0) * u - t;
397  S[2] = Tab[2] + Rab(2, 0) * u;
398 
399  if (P && Q) {
400  *P << 0, t, 0;
401  *Q = S + (*P);
402  }
403 
404  return S.norm();
405  }
406  }
407 
408  FCL_REAL BLL_y, BLU_y, BUL_y, BUU_y;
409 
410  BLL_y = Tab[1];
411  BLU_y = BLL_y + bA1_dot_B1;
412  BUL_y = BLL_y + bA1_dot_B0;
413  BUU_y = BLU_y + bA1_dot_B0;
414 
415  FCL_REAL LA0_lx, LA0_ux, UA0_lx, UA0_ux, LB1_ly, LB1_uy, UB1_ly, UB1_uy;
416 
417  if (ALL_x < AUL_x) {
418  LA0_lx = ALL_x;
419  LA0_ux = AUL_x;
420  UA0_lx = ALU_x;
421  UA0_ux = AUU_x;
422  } else {
423  LA0_lx = AUL_x;
424  LA0_ux = ALL_x;
425  UA0_lx = AUU_x;
426  UA0_ux = ALU_x;
427  }
428 
429  if (BLL_y < BLU_y) {
430  LB1_ly = BLL_y;
431  LB1_uy = BLU_y;
432  UB1_ly = BUL_y;
433  UB1_uy = BUU_y;
434  } else {
435  LB1_ly = BLU_y;
436  LB1_uy = BLL_y;
437  UB1_ly = BUU_y;
438  UB1_uy = BUL_y;
439  }
440 
441  // UA0, UB1
442 
443  if ((UA0_ux > b[0]) && (UB1_uy > a[1])) {
444  if (((UA0_lx > b[0]) ||
445  inVoronoi(b[1], a[0], A0_dot_B0, aA1_dot_B0 - Tba[0] - b[0], A0_dot_B1,
446  aA1_dot_B1 - Tba[1], -Tab[0] - bA0_dot_B0)) &&
447  ((UB1_ly > a[1]) ||
448  inVoronoi(a[0], b[1], A1_dot_B1, Tab[1] - a[1] + bA1_dot_B0, A0_dot_B1,
449  Tab[0] + bA0_dot_B0, Tba[1] - aA1_dot_B1))) {
450  segCoords(t, u, a[0], b[1], A0_dot_B1, Tab[0] + bA0_dot_B0,
451  Tba[1] - aA1_dot_B1);
452 
453  S[0] = Tab[0] + Rab(0, 0) * b[0] + Rab(0, 1) * u - t;
454  S[1] = Tab[1] + Rab(1, 0) * b[0] + Rab(1, 1) * u - a[1];
455  S[2] = Tab[2] + Rab(2, 0) * b[0] + Rab(2, 1) * u;
456 
457  if (P && Q) {
458  *P << t, a[1], 0;
459  *Q = S + (*P);
460  }
461 
462  return S.norm();
463  }
464  }
465 
466  // UA0, LB1
467 
468  if ((UA0_lx < 0) && (LB1_uy > a[1])) {
469  if (((UA0_ux < 0) || inVoronoi(b[1], a[0], -A0_dot_B0, Tba[0] - aA1_dot_B0,
470  A0_dot_B1, aA1_dot_B1 - Tba[1], -Tab[0])) &&
471  ((LB1_ly > a[1]) ||
472  inVoronoi(a[0], b[1], A1_dot_B1, Tab[1] - a[1], A0_dot_B1, Tab[0],
473  Tba[1] - aA1_dot_B1))) {
474  segCoords(t, u, a[0], b[1], A0_dot_B1, Tab[0], Tba[1] - aA1_dot_B1);
475 
476  S[0] = Tab[0] + Rab(0, 1) * u - t;
477  S[1] = Tab[1] + Rab(1, 1) * u - a[1];
478  S[2] = Tab[2] + Rab(2, 1) * u;
479 
480  if (P && Q) {
481  *P << t, a[1], 0;
482  *Q = S + (*P);
483  }
484 
485  return S.norm();
486  }
487  }
488 
489  // LA0, UB1
490 
491  if ((LA0_ux > b[0]) && (UB1_ly < 0)) {
492  if (((LA0_lx > b[0]) ||
493  inVoronoi(b[1], a[0], A0_dot_B0, -b[0] - Tba[0], A0_dot_B1, -Tba[1],
494  -bA0_dot_B0 - Tab[0])) &&
495  ((UB1_uy < 0) || inVoronoi(a[0], b[1], -A1_dot_B1, -Tab[1] - bA1_dot_B0,
496  A0_dot_B1, Tab[0] + bA0_dot_B0, Tba[1]))) {
497  segCoords(t, u, a[0], b[1], A0_dot_B1, Tab[0] + bA0_dot_B0, Tba[1]);
498 
499  S[0] = Tab[0] + Rab(0, 0) * b[0] + Rab(0, 1) * u - t;
500  S[1] = Tab[1] + Rab(1, 0) * b[0] + Rab(1, 1) * u;
501  S[2] = Tab[2] + Rab(2, 0) * b[0] + Rab(2, 1) * u;
502 
503  if (P && Q) {
504  *P << t, 0, 0;
505  *Q = S + (*P);
506  }
507 
508  return S.norm();
509  }
510  }
511 
512  // LA0, LB1
513 
514  if ((LA0_lx < 0) && (LB1_ly < 0)) {
515  if (((LA0_ux < 0) || inVoronoi(b[1], a[0], -A0_dot_B0, Tba[0], A0_dot_B1,
516  -Tba[1], -Tab[0])) &&
517  ((LB1_uy < 0) || inVoronoi(a[0], b[1], -A1_dot_B1, -Tab[1], A0_dot_B1,
518  Tab[0], Tba[1]))) {
519  segCoords(t, u, a[0], b[1], A0_dot_B1, Tab[0], Tba[1]);
520 
521  S[0] = Tab[0] + Rab(0, 1) * u - t;
522  S[1] = Tab[1] + Rab(1, 1) * u;
523  S[2] = Tab[2] + Rab(2, 1) * u;
524 
525  if (P && Q) {
526  *P << t, 0, 0;
527  *Q = S + (*P);
528  }
529 
530  return S.norm();
531  }
532  }
533 
534  FCL_REAL LA0_ly, LA0_uy, UA0_ly, UA0_uy, LB0_ly, LB0_uy, UB0_ly, UB0_uy;
535 
536  if (ALL_y < AUL_y) {
537  LA0_ly = ALL_y;
538  LA0_uy = AUL_y;
539  UA0_ly = ALU_y;
540  UA0_uy = AUU_y;
541  } else {
542  LA0_ly = AUL_y;
543  LA0_uy = ALL_y;
544  UA0_ly = AUU_y;
545  UA0_uy = ALU_y;
546  }
547 
548  if (BLL_y < BUL_y) {
549  LB0_ly = BLL_y;
550  LB0_uy = BUL_y;
551  UB0_ly = BLU_y;
552  UB0_uy = BUU_y;
553  } else {
554  LB0_ly = BUL_y;
555  LB0_uy = BLL_y;
556  UB0_ly = BUU_y;
557  UB0_uy = BLU_y;
558  }
559 
560  // UA0, UB0
561 
562  if ((UA0_uy > b[1]) && (UB0_uy > a[1])) {
563  if (((UA0_ly > b[1]) ||
564  inVoronoi(b[0], a[0], A0_dot_B1, aA1_dot_B1 - Tba[1] - b[1], A0_dot_B0,
565  aA1_dot_B0 - Tba[0], -Tab[0] - bA0_dot_B1)) &&
566  ((UB0_ly > a[1]) ||
567  inVoronoi(a[0], b[0], A1_dot_B0, Tab[1] - a[1] + bA1_dot_B1, A0_dot_B0,
568  Tab[0] + bA0_dot_B1, Tba[0] - aA1_dot_B0))) {
569  segCoords(t, u, a[0], b[0], A0_dot_B0, Tab[0] + bA0_dot_B1,
570  Tba[0] - aA1_dot_B0);
571 
572  S[0] = Tab[0] + Rab(0, 1) * b[1] + Rab(0, 0) * u - t;
573  S[1] = Tab[1] + Rab(1, 1) * b[1] + Rab(1, 0) * u - a[1];
574  S[2] = Tab[2] + Rab(2, 1) * b[1] + Rab(2, 0) * u;
575 
576  if (P && Q) {
577  *P << t, a[1], 0;
578  *Q = S + (*P);
579  }
580 
581  return S.norm();
582  }
583  }
584 
585  // UA0, LB0
586 
587  if ((UA0_ly < 0) && (LB0_uy > a[1])) {
588  if (((UA0_uy < 0) || inVoronoi(b[0], a[0], -A0_dot_B1, Tba[1] - aA1_dot_B1,
589  A0_dot_B0, aA1_dot_B0 - Tba[0], -Tab[0])) &&
590  ((LB0_ly > a[1]) ||
591  inVoronoi(a[0], b[0], A1_dot_B0, Tab[1] - a[1], A0_dot_B0, Tab[0],
592  Tba[0] - aA1_dot_B0))) {
593  segCoords(t, u, a[0], b[0], A0_dot_B0, Tab[0], Tba[0] - aA1_dot_B0);
594 
595  S[0] = Tab[0] + Rab(0, 0) * u - t;
596  S[1] = Tab[1] + Rab(1, 0) * u - a[1];
597  S[2] = Tab[2] + Rab(2, 0) * u;
598 
599  if (P && Q) {
600  *P << t, a[1], 0;
601  *Q = S + (*P);
602  }
603 
604  return S.norm();
605  }
606  }
607 
608  // LA0, UB0
609 
610  if ((LA0_uy > b[1]) && (UB0_ly < 0)) {
611  if (((LA0_ly > b[1]) ||
612  inVoronoi(b[0], a[0], A0_dot_B1, -Tba[1] - b[1], A0_dot_B0, -Tba[0],
613  -Tab[0] - bA0_dot_B1)) &&
614 
615  ((UB0_uy < 0) || inVoronoi(a[0], b[0], -A1_dot_B0, -Tab[1] - bA1_dot_B1,
616  A0_dot_B0, Tab[0] + bA0_dot_B1, Tba[0]))) {
617  segCoords(t, u, a[0], b[0], A0_dot_B0, Tab[0] + bA0_dot_B1, Tba[0]);
618 
619  S[0] = Tab[0] + Rab(0, 1) * b[1] + Rab(0, 0) * u - t;
620  S[1] = Tab[1] + Rab(1, 1) * b[1] + Rab(1, 0) * u;
621  S[2] = Tab[2] + Rab(2, 1) * b[1] + Rab(2, 0) * u;
622 
623  if (P && Q) {
624  *P << t, 0, 0;
625  *Q = S + (*P);
626  }
627 
628  return S.norm();
629  }
630  }
631 
632  // LA0, LB0
633 
634  if ((LA0_ly < 0) && (LB0_ly < 0)) {
635  if (((LA0_uy < 0) || inVoronoi(b[0], a[0], -A0_dot_B1, Tba[1], A0_dot_B0,
636  -Tba[0], -Tab[0])) &&
637  ((LB0_uy < 0) || inVoronoi(a[0], b[0], -A1_dot_B0, -Tab[1], A0_dot_B0,
638  Tab[0], Tba[0]))) {
639  segCoords(t, u, a[0], b[0], A0_dot_B0, Tab[0], Tba[0]);
640 
641  S[0] = Tab[0] + Rab(0, 0) * u - t;
642  S[1] = Tab[1] + Rab(1, 0) * u;
643  S[2] = Tab[2] + Rab(2, 0) * u;
644 
645  if (P && Q) {
646  *P << t, 0, 0;
647  *Q = S + (*P);
648  }
649 
650  return S.norm();
651  }
652  }
653 
654  // no edges passed, take max separation along face normals
655 
656  FCL_REAL sep1, sep2;
657 
658  if (Tab[2] > 0.0) {
659  sep1 = Tab[2];
660  if (Rab(2, 0) < 0.0) sep1 += b[0] * Rab(2, 0);
661  if (Rab(2, 1) < 0.0) sep1 += b[1] * Rab(2, 1);
662  } else {
663  sep1 = -Tab[2];
664  if (Rab(2, 0) > 0.0) sep1 -= b[0] * Rab(2, 0);
665  if (Rab(2, 1) > 0.0) sep1 -= b[1] * Rab(2, 1);
666  }
667 
668  if (Tba[2] < 0) {
669  sep2 = -Tba[2];
670  if (Rab(0, 2) < 0.0) sep2 += a[0] * Rab(0, 2);
671  if (Rab(1, 2) < 0.0) sep2 += a[1] * Rab(1, 2);
672  } else {
673  sep2 = Tba[2];
674  if (Rab(0, 2) > 0.0) sep2 -= a[0] * Rab(0, 2);
675  if (Rab(1, 2) > 0.0) sep2 -= a[1] * Rab(1, 2);
676  }
677 
678  if (sep1 >= sep2 && sep1 >= 0) {
679  if (Tab[2] > 0)
680  S << 0, 0, sep1;
681  else
682  S << 0, 0, -sep1;
683 
684  if (P && Q) {
685  *Q = S;
686  P->setZero();
687  }
688  }
689 
690  if (sep2 >= sep1 && sep2 >= 0) {
691  Vec3f Q_(Tab[0], Tab[1], Tab[2]);
692  Vec3f P_;
693  if (Tba[2] < 0) {
694  P_[0] = Rab(0, 2) * sep2 + Tab[0];
695  P_[1] = Rab(1, 2) * sep2 + Tab[1];
696  P_[2] = Rab(2, 2) * sep2 + Tab[2];
697  } else {
698  P_[0] = -Rab(0, 2) * sep2 + Tab[0];
699  P_[1] = -Rab(1, 2) * sep2 + Tab[1];
700  P_[2] = -Rab(2, 2) * sep2 + Tab[2];
701  }
702 
703  S = Q_ - P_;
704 
705  if (P && Q) {
706  *P = P_;
707  *Q = Q_;
708  }
709  }
710 
711  FCL_REAL sep = (sep1 > sep2 ? sep1 : sep2);
712  return (sep > 0 ? sep : 0);
713 }
714 
715 bool RSS::overlap(const RSS& other) const {
719 
721  Vec3f T(axes.transpose() * (other.Tr - Tr));
722 
724  Matrix3f R(axes.transpose() * other.axes);
725 
726  FCL_REAL dist = rectDistance(R, T, length, other.length);
727  return (dist <= (radius + other.radius));
728 }
729 
730 bool overlap(const Matrix3f& R0, const Vec3f& T0, const RSS& b1,
731  const RSS& b2) {
732  // ROb2 = R0 . b2
733  // where b2 = [ b2.axis [0] | b2.axis [1] | b2.axis [2] ]
734 
735  // (1 0 0)^T R0b2^T axis [0] = (1 0 0)^T b2^T R0^T axis [0]
736  // R = b2^T RO^T b1
737  Vec3f Ttemp(R0.transpose() * (b2.Tr - T0) - b1.Tr);
738  Vec3f T(b1.axes.transpose() * Ttemp);
739  Matrix3f R(b1.axes.transpose() * R0.transpose() * b2.axes);
740 
741  FCL_REAL dist = rectDistance(R, T, b1.length, b2.length);
742  return (dist <= (b1.radius + b2.radius));
743 }
744 
745 bool overlap(const Matrix3f& R0, const Vec3f& T0, const RSS& b1, const RSS& b2,
746  const CollisionRequest& request, FCL_REAL& sqrDistLowerBound) {
747  // ROb2 = R0 . b2
748  // where b2 = [ b2.axis [0] | b2.axis [1] | b2.axis [2] ]
749 
750  // (1 0 0)^T R0b2^T axis [0] = (1 0 0)^T b2^T R0^T axis [0]
751  // R = b2^T RO^T b1
752  Vec3f Ttemp(R0.transpose() * (b2.Tr - T0) - b1.Tr);
753  Vec3f T(b1.axes.transpose() * Ttemp);
754  Matrix3f R(b1.axes.transpose() * R0.transpose() * b2.axes);
755 
756  FCL_REAL dist = rectDistance(R, T, b1.length, b2.length) - b1.radius -
757  b2.radius - request.security_margin;
758  if (dist <= 0) return true;
759  sqrDistLowerBound = dist * dist;
760  return false;
761 }
762 
763 bool RSS::contain(const Vec3f& p) const {
764  Vec3f local_p = p - Tr;
765  // FIXME: Vec3f proj (axes.transpose() * local_p);
766  FCL_REAL proj0 = local_p.dot(axes.col(0));
767  FCL_REAL proj1 = local_p.dot(axes.col(1));
768  FCL_REAL proj2 = local_p.dot(axes.col(2));
769  FCL_REAL abs_proj2 = fabs(proj2);
770  Vec3f proj(proj0, proj1, proj2);
771 
773  if ((proj0 < length[0]) && (proj0 > 0) && (proj1 < length[1]) &&
774  (proj1 > 0)) {
775  return (abs_proj2 < radius);
776  } else if ((proj0 < length[0]) && (proj0 > 0) &&
777  ((proj1 < 0) || (proj1 > length[1]))) {
778  FCL_REAL y = (proj1 > 0) ? length[1] : 0;
779  Vec3f v(proj0, y, 0);
780  return ((proj - v).squaredNorm() < radius * radius);
781  } else if ((proj1 < length[1]) && (proj1 > 0) &&
782  ((proj0 < 0) || (proj0 > length[0]))) {
783  FCL_REAL x = (proj0 > 0) ? length[0] : 0;
784  Vec3f v(x, proj1, 0);
785  return ((proj - v).squaredNorm() < radius * radius);
786  } else {
787  FCL_REAL x = (proj0 > 0) ? length[0] : 0;
788  FCL_REAL y = (proj1 > 0) ? length[1] : 0;
789  Vec3f v(x, y, 0);
790  return ((proj - v).squaredNorm() < radius * radius);
791  }
792 }
793 
795  Vec3f local_p = p - Tr;
796  FCL_REAL proj0 = local_p.dot(axes.col(0));
797  FCL_REAL proj1 = local_p.dot(axes.col(1));
798  FCL_REAL proj2 = local_p.dot(axes.col(2));
799  FCL_REAL abs_proj2 = fabs(proj2);
800  Vec3f proj(proj0, proj1, proj2);
801 
802  // projection is within the rectangle
803  if ((proj0 < length[0]) && (proj0 > 0) && (proj1 < length[1]) &&
804  (proj1 > 0)) {
805  if (abs_proj2 < radius)
806  ; // do nothing
807  else {
808  radius = 0.5 * (radius + abs_proj2); // enlarge the r
809  // change RSS origin position
810  if (proj2 > 0)
811  Tr[2] += 0.5 * (abs_proj2 - radius);
812  else
813  Tr[2] -= 0.5 * (abs_proj2 - radius);
814  }
815  } else if ((proj0 < length[0]) && (proj0 > 0) &&
816  ((proj1 < 0) || (proj1 > length[1]))) {
817  FCL_REAL y = (proj1 > 0) ? length[1] : 0;
818  Vec3f v(proj0, y, 0);
819  FCL_REAL new_r_sqr = (proj - v).squaredNorm();
820  if (new_r_sqr < radius * radius)
821  ; // do nothing
822  else {
823  if (abs_proj2 < radius) {
824  FCL_REAL delta_y =
825  -std::sqrt(radius * radius - proj2 * proj2) + fabs(proj1 - y);
826  length[1] += delta_y;
827  if (proj1 < 0) Tr[1] -= delta_y;
828  } else {
829  FCL_REAL delta_y = fabs(proj1 - y);
830  length[1] += delta_y;
831  if (proj1 < 0) Tr[1] -= delta_y;
832 
833  if (proj2 > 0)
834  Tr[2] += 0.5 * (abs_proj2 - radius);
835  else
836  Tr[2] -= 0.5 * (abs_proj2 - radius);
837  }
838  }
839  } else if ((proj1 < length[1]) && (proj1 > 0) &&
840  ((proj0 < 0) || (proj0 > length[0]))) {
841  FCL_REAL x = (proj0 > 0) ? length[0] : 0;
842  Vec3f v(x, proj1, 0);
843  FCL_REAL new_r_sqr = (proj - v).squaredNorm();
844  if (new_r_sqr < radius * radius)
845  ; // do nothing
846  else {
847  if (abs_proj2 < radius) {
848  FCL_REAL delta_x =
849  -std::sqrt(radius * radius - proj2 * proj2) + fabs(proj0 - x);
850  length[0] += delta_x;
851  if (proj0 < 0) Tr[0] -= delta_x;
852  } else {
853  FCL_REAL delta_x = fabs(proj0 - x);
854  length[0] += delta_x;
855  if (proj0 < 0) Tr[0] -= delta_x;
856 
857  if (proj2 > 0)
858  Tr[2] += 0.5 * (abs_proj2 - radius);
859  else
860  Tr[2] -= 0.5 * (abs_proj2 - radius);
861  }
862  }
863  } else {
864  FCL_REAL x = (proj0 > 0) ? length[0] : 0;
865  FCL_REAL y = (proj1 > 0) ? length[1] : 0;
866  Vec3f v(x, y, 0);
867  FCL_REAL new_r_sqr = (proj - v).squaredNorm();
868  if (new_r_sqr < radius * radius)
869  ; // do nothing
870  else {
871  if (abs_proj2 < radius) {
872  FCL_REAL diag = std::sqrt(new_r_sqr - proj2 * proj2);
873  FCL_REAL delta_diag =
874  -std::sqrt(radius * radius - proj2 * proj2) + diag;
875 
876  FCL_REAL delta_x = delta_diag / diag * fabs(proj0 - x);
877  FCL_REAL delta_y = delta_diag / diag * fabs(proj1 - y);
878  length[0] += delta_x;
879  length[1] += delta_y;
880 
881  if (proj0 < 0 && proj1 < 0) {
882  Tr[0] -= delta_x;
883  Tr[1] -= delta_y;
884  }
885  } else {
886  FCL_REAL delta_x = fabs(proj0 - x);
887  FCL_REAL delta_y = fabs(proj1 - y);
888 
889  length[0] += delta_x;
890  length[1] += delta_y;
891 
892  if (proj0 < 0 && proj1 < 0) {
893  Tr[0] -= delta_x;
894  Tr[1] -= delta_y;
895  }
896 
897  if (proj2 > 0)
898  Tr[2] += 0.5 * (abs_proj2 - radius);
899  else
900  Tr[2] -= 0.5 * (abs_proj2 - radius);
901  }
902  }
903  }
904 
905  return *this;
906 }
907 
908 RSS RSS::operator+(const RSS& other) const {
909  RSS bv;
910 
911  Vec3f v[16];
912  Vec3f d0_pos(other.axes.col(0) * (other.length[0] + other.radius));
913  Vec3f d1_pos(other.axes.col(1) * (other.length[1] + other.radius));
914  Vec3f d0_neg(other.axes.col(0) * (-other.radius));
915  Vec3f d1_neg(other.axes.col(1) * (-other.radius));
916  Vec3f d2_pos(other.axes.col(2) * other.radius);
917  Vec3f d2_neg(other.axes.col(2) * (-other.radius));
918 
919  v[0].noalias() = other.Tr + d0_pos + d1_pos + d2_pos;
920  v[1].noalias() = other.Tr + d0_pos + d1_pos + d2_neg;
921  v[2].noalias() = other.Tr + d0_pos + d1_neg + d2_pos;
922  v[3].noalias() = other.Tr + d0_pos + d1_neg + d2_neg;
923  v[4].noalias() = other.Tr + d0_neg + d1_pos + d2_pos;
924  v[5].noalias() = other.Tr + d0_neg + d1_pos + d2_neg;
925  v[6].noalias() = other.Tr + d0_neg + d1_neg + d2_pos;
926  v[7].noalias() = other.Tr + d0_neg + d1_neg + d2_neg;
927 
928  d0_pos.noalias() = axes.col(0) * (length[0] + radius);
929  d1_pos.noalias() = axes.col(1) * (length[1] + radius);
930  d0_neg.noalias() = axes.col(0) * (-radius);
931  d1_neg.noalias() = axes.col(1) * (-radius);
932  d2_pos.noalias() = axes.col(2) * radius;
933  d2_neg.noalias() = axes.col(2) * (-radius);
934 
935  v[8].noalias() = Tr + d0_pos + d1_pos + d2_pos;
936  v[9].noalias() = Tr + d0_pos + d1_pos + d2_neg;
937  v[10].noalias() = Tr + d0_pos + d1_neg + d2_pos;
938  v[11].noalias() = Tr + d0_pos + d1_neg + d2_neg;
939  v[12].noalias() = Tr + d0_neg + d1_pos + d2_pos;
940  v[13].noalias() = Tr + d0_neg + d1_pos + d2_neg;
941  v[14].noalias() = Tr + d0_neg + d1_neg + d2_pos;
942  v[15].noalias() = Tr + d0_neg + d1_neg + d2_neg;
943 
944  Matrix3f M; // row first matrix
945  Vec3f E[3]; // row first eigen-vectors
946  Matrix3f::Scalar s[3] = {0, 0, 0};
947 
948  getCovariance(v, NULL, NULL, NULL, 16, M);
949  eigen(M, s, E);
950 
951  int min, mid, max;
952  if (s[0] > s[1]) {
953  max = 0;
954  min = 1;
955  } else {
956  min = 0;
957  max = 1;
958  }
959  if (s[2] < s[min]) {
960  mid = min;
961  min = 2;
962  } else if (s[2] > s[max]) {
963  mid = max;
964  max = 2;
965  } else {
966  mid = 2;
967  }
968 
969  // column first matrix, as the axis in RSS
970  bv.axes.col(0) << E[0][max], E[1][max], E[2][max];
971  bv.axes.col(1) << E[0][mid], E[1][mid], E[2][mid];
972  bv.axes.col(2) << E[1][max] * E[2][mid] - E[1][mid] * E[2][max],
973  E[0][mid] * E[2][max] - E[0][max] * E[2][mid],
974  E[0][max] * E[1][mid] - E[0][mid] * E[1][max];
975 
976  // set rss origin, rectangle size and radius
977  getRadiusAndOriginAndRectangleSize(v, NULL, NULL, NULL, 16, bv.axes, bv.Tr,
978  bv.length, bv.radius);
979 
980  return bv;
981 }
982 
983 FCL_REAL RSS::distance(const RSS& other, Vec3f* P, Vec3f* Q) const {
984  // compute what transform [R,T] that takes us from cs1 to cs2.
985  // [R,T] = [R1,T1]'[R2,T2] = [R1',-R1'T][R2,T2] = [R1'R2, R1'(T2-T1)]
986  // First compute the rotation part, then translation part
987  Matrix3f R(axes.transpose() * other.axes);
988  Vec3f T(axes.transpose() * (other.Tr - Tr));
989 
990  FCL_REAL dist = rectDistance(R, T, length, other.length, P, Q);
991  dist -= (radius + other.radius);
992  return (dist < (FCL_REAL)0.0) ? (FCL_REAL)0.0 : dist;
993 }
994 
995 FCL_REAL distance(const Matrix3f& R0, const Vec3f& T0, const RSS& b1,
996  const RSS& b2, Vec3f* P, Vec3f* Q) {
997  Matrix3f R(b1.axes.transpose() * R0 * b2.axes);
998  Vec3f Ttemp(R0 * b2.Tr + T0 - b1.Tr);
999 
1000  Vec3f T(b1.axes.transpose() * Ttemp);
1001 
1002  FCL_REAL dist = rectDistance(R, T, b1.length, b2.length, P, Q);
1003  dist -= (b1.radius + b2.radius);
1004  return (dist < (FCL_REAL)0.0) ? (FCL_REAL)0.0 : dist;
1005 }
1006 
1007 RSS translate(const RSS& bv, const Vec3f& t) {
1008  RSS res(bv);
1009  res.Tr += t;
1010  return res;
1011 }
1012 
1013 } // namespace fcl
1014 
1015 } // namespace hpp
hpp::fcl::Vec3f
Eigen::Matrix< FCL_REAL, 3, 1 > Vec3f
Definition: data_types.h:66
RSS.h
sep
const char * sep
Definition: obb.cpp:92
hpp::fcl::RSS::axes
Matrix3f axes
Orientation of RSS. axis[i] is the ith column of the orientation matrix for the RSS; it is also the i...
Definition: BV/RSS.h:59
hpp::fcl::segCoords
void segCoords(FCL_REAL &t, FCL_REAL &u, FCL_REAL a, FCL_REAL b, FCL_REAL A_dot_B, FCL_REAL A_dot_T, FCL_REAL B_dot_T)
Finds the parameters t & u corresponding to the two closest points on a pair of line segments....
Definition: RSS.cpp:67
y
y
hpp::fcl::getCovariance
HPP_FCL_DLLAPI void getCovariance(Vec3f *ps, Vec3f *ps2, Triangle *ts, unsigned int *indices, unsigned int n, Matrix3f &M)
Compute the covariance matrix for a set or subset of points. if ts = null, then indices refer to poin...
Definition: BVH_utility.cpp:168
hpp::fcl::eigen
void eigen(const Eigen::MatrixBase< Derived > &m, typename Derived::Scalar dout[3], Vector *vout)
compute the eigen vector and eigen vector of a matrix. dout is the eigen values, vout is the eigen ve...
Definition: tools.h:104
hpp::fcl::distance
HPP_FCL_DLLAPI FCL_REAL distance(const Matrix3f &R0, const Vec3f &T0, const kIOS &b1, const kIOS &b2, Vec3f *P=NULL, Vec3f *Q=NULL)
Approximate distance between two kIOS bounding volumes.
Definition: kIOS.cpp:181
R
R
hpp::fcl::RSS::Tr
Vec3f Tr
Origin of the rectangle in RSS.
Definition: BV/RSS.h:62
a
list a
res
res
hpp::fcl::FCL_REAL
double FCL_REAL
Definition: data_types.h:65
hpp::fcl::CollisionRequest::security_margin
FCL_REAL security_margin
Distance below which objects are considered in collision. See Collision.
Definition: collision_data.h:251
P
P
hpp::fcl::getRadiusAndOriginAndRectangleSize
HPP_FCL_DLLAPI void getRadiusAndOriginAndRectangleSize(Vec3f *ps, Vec3f *ps2, Triangle *ts, unsigned int *indices, unsigned int n, const Matrix3f &axes, Vec3f &origin, FCL_REAL l[2], FCL_REAL &r)
Compute the RSS bounding volume parameters: radius, rectangle size and the origin,...
Definition: BVH_utility.cpp:249
collision_data.h
hpp
Main namespace.
Definition: broadphase_bruteforce.h:44
hpp::fcl::CollisionRequest
request to the collision algorithm
Definition: collision_data.h:235
x
x
hpp::fcl::clipToRange
void clipToRange(FCL_REAL &val, FCL_REAL a, FCL_REAL b)
Clip value between a and b.
Definition: RSS.cpp:49
t
tuple t
M
M
hpp::fcl::inVoronoi
bool inVoronoi(FCL_REAL a, FCL_REAL b, FCL_REAL Anorm_dot_B, FCL_REAL Anorm_dot_T, FCL_REAL A_dot_B, FCL_REAL A_dot_T, FCL_REAL B_dot_T)
Returns whether the nearest point on rectangle edge Pb + B*u, 0 <= u <= b, to the rectangle edge,...
Definition: RSS.cpp:95
hpp::fcl::Matrix3f
Eigen::Matrix< FCL_REAL, 3, 3 > Matrix3f
Definition: data_types.h:68
hpp::fcl::RSS
A class for rectangle sphere-swept bounding volume.
Definition: BV/RSS.h:53
generate_distance_plot.b
float b
Definition: generate_distance_plot.py:7
hpp::fcl::RSS::operator+
RSS operator+(const RSS &other) const
Return the merged RSS of current RSS and the other one.
Definition: RSS.cpp:908
hpp::fcl::overlap
HPP_FCL_DLLAPI bool overlap(const Matrix3f &R0, const Vec3f &T0, const AABB &b1, const AABB &b2)
Check collision between two aabbs, b1 is in configuration (R0, T0) and b2 is in identity.
Definition: AABB.cpp:134
hpp::fcl::RSS::distance
FCL_REAL distance(const RSS &other, Vec3f *P=NULL, Vec3f *Q=NULL) const
the distance between two RSS; P and Q, if not NULL, return the nearest points
Definition: RSS.cpp:983
hpp::fcl::rectDistance
FCL_REAL rectDistance(const Matrix3f &Rab, Vec3f const &Tab, const FCL_REAL a[2], const FCL_REAL b[2], Vec3f *P=NULL, Vec3f *Q=NULL)
Distance between two oriented rectangles; P and Q (optional return values) are the closest points in ...
Definition: RSS.cpp:121
tools.h
hpp::fcl::RSS::operator+=
RSS & operator+=(const Vec3f &p)
A simple way to merge the RSS and a point, not compact.
Definition: RSS.cpp:794
BVH_utility.h
hpp::fcl::RSS::length
FCL_REAL length[2]
Side lengths of rectangle.
Definition: BV/RSS.h:65
hpp::fcl::RSS::contain
bool contain(const Vec3f &p) const
Check whether the RSS contains a point.
Definition: RSS.cpp:763
hpp::fcl::translate
static AABB translate(const AABB &aabb, const Vec3f &t)
translate the center of AABB by t
Definition: BV/AABB.h:226
hpp::fcl::RSS::overlap
bool overlap(const RSS &other) const
Check collision between two RSS.
Definition: RSS.cpp:715
hpp::fcl::RSS::radius
FCL_REAL radius
Radius of sphere summed with rectangle to form RSS.
Definition: BV/RSS.h:68
obb.v
list v
Definition: obb.py:48


hpp-fcl
Author(s):
autogenerated on Fri Aug 2 2024 02:45:15