cxx11_tensor_math_sycl.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli Codeplay Software Ltd.
6 // Ralph Potter Codeplay Software Ltd.
7 // Luke Iwanski Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 // Benoit Steiner <benoit.steiner.goog@gmail.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 #define EIGEN_TEST_NO_LONGDOUBLE
16 #define EIGEN_TEST_NO_COMPLEX
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::array;
24 using Eigen::SyclDevice;
25 using Eigen::Tensor;
26 using Eigen::TensorMap;
27 
28 using Eigen::Tensor;
29 using Eigen::RowMajor;
30 template <typename DataType, int DataLayout, typename IndexType>
31 static void test_tanh_sycl(const Eigen::SyclDevice &sycl_device)
32 {
33 
34  IndexType sizeDim1 = 4;
35  IndexType sizeDim2 = 4;
36  IndexType sizeDim3 = 1;
37  array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
40  Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange);
41 
42  in = in.random();
43 
44  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
45  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
46 
47  TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
48  TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
49 
50  sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType));
51  gpu2.device(sycl_device) = gpu1.tanh();
52  sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType));
53 
54  out_cpu=in.tanh();
55 
56  for (int i = 0; i < in.size(); ++i) {
57  VERIFY_IS_APPROX(out(i), out_cpu(i));
58  }
59 }
60 template <typename DataType, int DataLayout, typename IndexType>
61 static void test_sigmoid_sycl(const Eigen::SyclDevice &sycl_device)
62 {
63 
64  IndexType sizeDim1 = 4;
65  IndexType sizeDim2 = 4;
66  IndexType sizeDim3 = 1;
67  array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
70  Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange);
71 
72  in = in.random();
73 
74  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
75  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
76 
77  TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
78  TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
79 
80  sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType));
81  gpu2.device(sycl_device) = gpu1.sigmoid();
82  sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType));
83 
84  out_cpu=in.sigmoid();
85 
86  for (int i = 0; i < in.size(); ++i) {
87  VERIFY_IS_APPROX(out(i), out_cpu(i));
88  }
89 }
90 
91 
92 template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){
93  QueueInterface queueInterface(s);
94  auto sycl_device = Eigen::SyclDevice(&queueInterface);
95  test_tanh_sycl<DataType, RowMajor, int64_t>(sycl_device);
96  test_tanh_sycl<DataType, ColMajor, int64_t>(sycl_device);
97  test_sigmoid_sycl<DataType, RowMajor, int64_t>(sycl_device);
98  test_sigmoid_sycl<DataType, ColMajor, int64_t>(sycl_device);
99 }
100 
101 EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl) {
102  for (const auto& device :Eigen::get_sycl_supported_devices()) {
103  CALL_SUBTEST(sycl_computing_test_per_device<float>(device));
104  }
105 }
Eigen::Tensor
The tensor class.
Definition: Tensor.h:63
array
int array[24]
Definition: Map_general_stride.cpp:1
s
RealScalar s
Definition: level1_cplx_impl.h:126
Eigen::array
Definition: EmulateArray.h:21
Eigen::RowMajor
@ RowMajor
Definition: Constants.h:321
test_sigmoid_sycl
static void test_sigmoid_sycl(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_math_sycl.cpp:61
Eigen::TensorMap
A tensor expression mapping an existing array of data.
Definition: TensorForwardDeclarations.h:52
test_tanh_sycl
static void test_tanh_sycl(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_math_sycl.cpp:31
out
std::ofstream out("Result.txt")
VERIFY_IS_APPROX
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:15
main.h
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl)
Definition: cxx11_tensor_math_sycl.cpp:101
Eigen::Tensor::data
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
sycl_computing_test_per_device
void sycl_computing_test_per_device(dev_Selector s)
Definition: cxx11_tensor_math_sycl.cpp:92
Eigen::Tensor::size
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const
Definition: Tensor.h:103
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
CALL_SUBTEST
#define CALL_SUBTEST(FUNC)
Definition: main.h:399


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:09