Public Types | Public Member Functions | Private Types | Private Attributes | List of all members
Spectra::SymGEigsCayleyOp< OpType, BOpType > Class Template Reference

#include <SymGEigsCayleyOp.h>

Public Types

using Scalar = typename OpType::Scalar
 

Public Member Functions

Index cols () const
 
void perform_op (const Scalar *x_in, Scalar *y_out) const
 
Index rows () const
 
void set_shift (const Scalar &sigma)
 
 SymGEigsCayleyOp (OpType &op, const BOpType &Bop)
 
 SymGEigsCayleyOp (SymGEigsCayleyOp &&other)
 

Private Types

using Index = Eigen::Index
 
using MapConstVec = Eigen::Map< const Vector >
 
using MapVec = Eigen::Map< Vector >
 
using Vector = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
 

Private Attributes

const BOpType & m_Bop
 
Vector m_cache
 
OpType & m_op
 
Scalar m_sigma
 

Detailed Description

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
class Spectra::SymGEigsCayleyOp< OpType, BOpType >

This class defines the matrix operation for generalized eigen solver in the Cayley mode. It computes $y=(A-\sigma B)^{-1}(A+\sigma B)x$ for any vector $x$, where $A$ is a symmetric matrix, $B$ is positive definite, and $\sigma$ is a real shift. This class is intended for internal use.

Definition at line 28 of file SymGEigsCayleyOp.h.

Member Typedef Documentation

◆ Index

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
using Spectra::SymGEigsCayleyOp< OpType, BOpType >::Index = Eigen::Index
private

Definition at line 34 of file SymGEigsCayleyOp.h.

◆ MapConstVec

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
using Spectra::SymGEigsCayleyOp< OpType, BOpType >::MapConstVec = Eigen::Map<const Vector>
private

Definition at line 36 of file SymGEigsCayleyOp.h.

◆ MapVec

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
using Spectra::SymGEigsCayleyOp< OpType, BOpType >::MapVec = Eigen::Map<Vector>
private

Definition at line 37 of file SymGEigsCayleyOp.h.

◆ Scalar

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
using Spectra::SymGEigsCayleyOp< OpType, BOpType >::Scalar = typename OpType::Scalar

Definition at line 31 of file SymGEigsCayleyOp.h.

◆ Vector

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
using Spectra::SymGEigsCayleyOp< OpType, BOpType >::Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>
private

Definition at line 35 of file SymGEigsCayleyOp.h.

Constructor & Destructor Documentation

◆ SymGEigsCayleyOp() [1/2]

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
Spectra::SymGEigsCayleyOp< OpType, BOpType >::SymGEigsCayleyOp ( OpType &  op,
const BOpType &  Bop 
)
inline

Constructor to create the matrix operation object.

Parameters
opThe $(A-\sigma B)^{-1}$ matrix operation object.
BopThe $B$ matrix operation object.

Definition at line 51 of file SymGEigsCayleyOp.h.

◆ SymGEigsCayleyOp() [2/2]

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
Spectra::SymGEigsCayleyOp< OpType, BOpType >::SymGEigsCayleyOp ( SymGEigsCayleyOp< OpType, BOpType > &&  other)
inline

Move constructor.

Definition at line 58 of file SymGEigsCayleyOp.h.

Member Function Documentation

◆ cols()

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
Index Spectra::SymGEigsCayleyOp< OpType, BOpType >::cols ( ) const
inline

Return the number of columns of the underlying matrix.

Definition at line 72 of file SymGEigsCayleyOp.h.

◆ perform_op()

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
void Spectra::SymGEigsCayleyOp< OpType, BOpType >::perform_op ( const Scalar x_in,
Scalar y_out 
) const
inline

Perform the matrix operation $y=(A-\sigma B)^{-1}(A+\sigma B)x$.

Parameters
x_inPointer to the $x$ vector.
y_outPointer to the $y$ vector.

Definition at line 90 of file SymGEigsCayleyOp.h.

◆ rows()

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
Index Spectra::SymGEigsCayleyOp< OpType, BOpType >::rows ( ) const
inline

Return the number of rows of the underlying matrix.

Definition at line 68 of file SymGEigsCayleyOp.h.

◆ set_shift()

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
void Spectra::SymGEigsCayleyOp< OpType, BOpType >::set_shift ( const Scalar sigma)
inline

Set the real shift $\sigma$.

Definition at line 77 of file SymGEigsCayleyOp.h.

Member Data Documentation

◆ m_Bop

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
const BOpType& Spectra::SymGEigsCayleyOp< OpType, BOpType >::m_Bop
private

Definition at line 40 of file SymGEigsCayleyOp.h.

◆ m_cache

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
Vector Spectra::SymGEigsCayleyOp< OpType, BOpType >::m_cache
mutableprivate

Definition at line 41 of file SymGEigsCayleyOp.h.

◆ m_op

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
OpType& Spectra::SymGEigsCayleyOp< OpType, BOpType >::m_op
private

Definition at line 39 of file SymGEigsCayleyOp.h.

◆ m_sigma

template<typename OpType = SymShiftInvert<double>, typename BOpType = SparseSymMatProd<double>>
Scalar Spectra::SymGEigsCayleyOp< OpType, BOpType >::m_sigma
private

Definition at line 42 of file SymGEigsCayleyOp.h.


The documentation for this class was generated from the following file:


gtsam
Author(s):
autogenerated on Wed May 28 2025 03:15:49