tls_cbc.c
Go to the documentation of this file.
1 /* ====================================================================
2  * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  * notice, this list of conditions and the following disclaimer in
13  * the documentation and/or other materials provided with the
14  * distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  * software must display the following acknowledgment:
18  * "This product includes software developed by the OpenSSL Project
19  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  * endorse or promote products derived from this software without
23  * prior written permission. For written permission, please contact
24  * openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  * nor may "OpenSSL" appear in their names without prior written
28  * permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  * acknowledgment:
32  * "This product includes software developed by the OpenSSL Project
33  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  *
49  * This product includes cryptographic software written by Eric Young
50  * (eay@cryptsoft.com). This product includes software written by Tim
51  * Hudson (tjh@cryptsoft.com). */
52 
53 #include <assert.h>
54 #include <string.h>
55 
56 #include <openssl/digest.h>
57 #include <openssl/nid.h>
58 #include <openssl/sha.h>
59 
60 #include "../internal.h"
61 #include "internal.h"
62 #include "../fipsmodule/cipher/internal.h"
63 
64 
65 int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len,
66  const uint8_t *in, size_t in_len,
67  size_t block_size, size_t mac_size) {
68  const size_t overhead = 1 /* padding length byte */ + mac_size;
69 
70  // These lengths are all public so we can test them in non-constant time.
71  if (overhead > in_len) {
72  return 0;
73  }
74 
75  size_t padding_length = in[in_len - 1];
76 
77  crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length);
78  // The padding consists of a length byte at the end of the record and
79  // then that many bytes of padding, all with the same value as the
80  // length byte. Thus, with the length byte included, there are i+1
81  // bytes of padding.
82  //
83  // We can't check just |padding_length+1| bytes because that leaks
84  // decrypted information. Therefore we always have to check the maximum
85  // amount of padding possible. (Again, the length of the record is
86  // public information so we can use it.)
87  size_t to_check = 256; // maximum amount of padding, inc length byte.
88  if (to_check > in_len) {
89  to_check = in_len;
90  }
91 
92  for (size_t i = 0; i < to_check; i++) {
93  uint8_t mask = constant_time_ge_8(padding_length, i);
94  uint8_t b = in[in_len - 1 - i];
95  // The final |padding_length+1| bytes should all have the value
96  // |padding_length|. Therefore the XOR should be zero.
97  good &= ~(mask & (padding_length ^ b));
98  }
99 
100  // If any of the final |padding_length+1| bytes had the wrong value,
101  // one or more of the lower eight bits of |good| will be cleared.
102  good = constant_time_eq_w(0xff, good & 0xff);
103 
104  // Always treat |padding_length| as zero on error. If, assuming block size of
105  // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
106  // and returned -1, distinguishing good MAC and bad padding from bad MAC and
107  // bad padding would give POODLE's padding oracle.
108  padding_length = good & (padding_length + 1);
109  *out_len = in_len - padding_length;
110  *out_padding_ok = good;
111  return 1;
112 }
113 
114 void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
115  size_t in_len, size_t orig_len) {
116  uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
117  uint8_t *rotated_mac = rotated_mac1;
118  uint8_t *rotated_mac_tmp = rotated_mac2;
119 
120  // mac_end is the index of |in| just after the end of the MAC.
121  size_t mac_end = in_len;
122  size_t mac_start = mac_end - md_size;
123 
124  assert(orig_len >= in_len);
125  assert(in_len >= md_size);
126  assert(md_size <= EVP_MAX_MD_SIZE);
127  assert(md_size > 0);
128 
129  // scan_start contains the number of bytes that we can ignore because
130  // the MAC's position can only vary by 255 bytes.
131  size_t scan_start = 0;
132  // This information is public so it's safe to branch based on it.
133  if (orig_len > md_size + 255 + 1) {
134  scan_start = orig_len - (md_size + 255 + 1);
135  }
136 
137  size_t rotate_offset = 0;
138  uint8_t mac_started = 0;
139  OPENSSL_memset(rotated_mac, 0, md_size);
140  for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) {
141  if (j >= md_size) {
142  j -= md_size;
143  }
144  crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start);
145  mac_started |= is_mac_start;
146  uint8_t mac_ended = constant_time_ge_8(i, mac_end);
147  rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
148  // Save the offset that |mac_start| is mapped to.
149  rotate_offset |= j & is_mac_start;
150  }
151 
152  // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
153  // position.
155  // Rotate by |offset| iff the corresponding bit is set in
156  // |rotate_offset|, placing the result in |rotated_mac_tmp|.
157  const uint8_t skip_rotate = (rotate_offset & 1) - 1;
158  for (size_t i = 0, j = offset; i < md_size; i++, j++) {
159  if (j >= md_size) {
160  j -= md_size;
161  }
162  rotated_mac_tmp[i] =
163  constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
164  }
165 
166  // Swap pointers so |rotated_mac| contains the (possibly) rotated value.
167  // Note the number of iterations and thus the identity of these pointers is
168  // public information.
169  uint8_t *tmp = rotated_mac;
170  rotated_mac = rotated_mac_tmp;
171  rotated_mac_tmp = tmp;
172  }
173 
174  OPENSSL_memcpy(out, rotated_mac, md_size);
175 }
176 
179  const uint8_t *in, size_t len,
180  size_t max_len) {
181  // Bound the input length so |total_bits| below fits in four bytes. This is
182  // redundant with TLS record size limits. This also ensures |input_idx| below
183  // does not overflow.
184  size_t max_len_bits = max_len << 3;
185  if (ctx->Nh != 0 ||
186  (max_len_bits >> 3) != max_len || // Overflow
187  ctx->Nl + max_len_bits < max_len_bits ||
188  ctx->Nl + max_len_bits > UINT32_MAX) {
189  return 0;
190  }
191 
192  // We need to hash the following into |ctx|:
193  //
194  // - ctx->data[:ctx->num]
195  // - in[:len]
196  // - A 0x80 byte
197  // - However many zero bytes are needed to pad up to a block.
198  // - Eight bytes of length.
199  size_t num_blocks = (ctx->num + len + 1 + 8 + SHA_CBLOCK - 1) >> 6;
200  size_t last_block = num_blocks - 1;
201  size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA_CBLOCK - 1) >> 6;
202 
203  // The bounds above imply |total_bits| fits in four bytes.
204  size_t total_bits = ctx->Nl + (len << 3);
205  uint8_t length_bytes[4];
206  length_bytes[0] = (uint8_t)(total_bits >> 24);
207  length_bytes[1] = (uint8_t)(total_bits >> 16);
208  length_bytes[2] = (uint8_t)(total_bits >> 8);
209  length_bytes[3] = (uint8_t)total_bits;
210 
211  // We now construct and process each expected block in constant-time.
212  uint8_t block[SHA_CBLOCK] = {0};
213  uint32_t result[5] = {0};
214  // input_idx is the index into |in| corresponding to the current block.
215  // However, we allow this index to overflow beyond |max_len|, to simplify the
216  // 0x80 byte.
217  size_t input_idx = 0;
218  for (size_t i = 0; i < max_blocks; i++) {
219  // Fill |block| with data from the partial block in |ctx| and |in|. We copy
220  // as if we were hashing up to |max_len| and then zero the excess later.
221  size_t block_start = 0;
222  if (i == 0) {
223  OPENSSL_memcpy(block, ctx->data, ctx->num);
224  block_start = ctx->num;
225  }
226  if (input_idx < max_len) {
227  size_t to_copy = SHA_CBLOCK - block_start;
228  if (to_copy > max_len - input_idx) {
229  to_copy = max_len - input_idx;
230  }
231  OPENSSL_memcpy(block + block_start, in + input_idx, to_copy);
232  }
233 
234  // Zero any bytes beyond |len| and add the 0x80 byte.
235  for (size_t j = block_start; j < SHA_CBLOCK; j++) {
236  // input[idx] corresponds to block[j].
237  size_t idx = input_idx + j - block_start;
238  // The barriers on |len| are not strictly necessary. However, without
239  // them, GCC compiles this code by incorporating |len| into the loop
240  // counter and subtracting it out later. This is still constant-time, but
241  // it frustrates attempts to validate this.
243  uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len));
244  block[j] &= is_in_bounds;
245  block[j] |= 0x80 & is_padding_byte;
246  }
247 
248  input_idx += SHA_CBLOCK - block_start;
249 
250  // Fill in the length if this is the last block.
251  crypto_word_t is_last_block = constant_time_eq_w(i, last_block);
252  for (size_t j = 0; j < 4; j++) {
253  block[SHA_CBLOCK - 4 + j] |= is_last_block & length_bytes[j];
254  }
255 
256  // Process the block and save the hash state if it is the final value.
258  for (size_t j = 0; j < 5; j++) {
259  result[j] |= is_last_block & ctx->h[j];
260  }
261  }
262 
263  // Write the output.
264  for (size_t i = 0; i < 5; i++) {
265  CRYPTO_store_u32_be(out + 4 * i, result[i]);
266  }
267  return 1;
268 }
269 
271  return EVP_MD_type(md) == NID_sha1;
272 }
273 
275  size_t *md_out_size, const uint8_t header[13],
276  const uint8_t *data, size_t data_size,
277  size_t data_plus_mac_plus_padding_size,
278  const uint8_t *mac_secret,
279  unsigned mac_secret_length) {
280  if (EVP_MD_type(md) != NID_sha1) {
281  // EVP_tls_cbc_record_digest_supported should have been called first to
282  // check that the hash function is supported.
283  assert(0);
284  *md_out_size = 0;
285  return 0;
286  }
287 
288  if (mac_secret_length > SHA_CBLOCK) {
289  // HMAC pads small keys with zeros and hashes large keys down. This function
290  // should never reach the large key case.
291  assert(0);
292  return 0;
293  }
294 
295  // Compute the initial HMAC block.
296  uint8_t hmac_pad[SHA_CBLOCK];
297  OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad));
298  OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
299  for (size_t i = 0; i < SHA_CBLOCK; i++) {
300  hmac_pad[i] ^= 0x36;
301  }
302 
303  SHA_CTX ctx;
304  SHA1_Init(&ctx);
305  SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK);
306  SHA1_Update(&ctx, header, 13);
307 
308  // There are at most 256 bytes of padding, so we can compute the public
309  // minimum length for |data_size|.
310  size_t min_data_size = 0;
311  if (data_plus_mac_plus_padding_size > SHA_DIGEST_LENGTH + 256) {
312  min_data_size = data_plus_mac_plus_padding_size - SHA_DIGEST_LENGTH - 256;
313  }
314 
315  // Hash the public minimum length directly. This reduces the number of blocks
316  // that must be computed in constant-time.
317  SHA1_Update(&ctx, data, min_data_size);
318 
319  // Hash the remaining data without leaking |data_size|.
320  uint8_t mac_out[SHA_DIGEST_LENGTH];
322  &ctx, mac_out, data + min_data_size, data_size - min_data_size,
323  data_plus_mac_plus_padding_size - min_data_size)) {
324  return 0;
325  }
326 
327  // Complete the HMAC in the standard manner.
328  SHA1_Init(&ctx);
329  for (size_t i = 0; i < SHA_CBLOCK; i++) {
330  hmac_pad[i] ^= 0x6a;
331  }
332 
333  SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK);
334  SHA1_Update(&ctx, mac_out, SHA_DIGEST_LENGTH);
335  SHA1_Final(md_out, &ctx);
336  *md_out_size = SHA_DIGEST_LENGTH;
337  return 1;
338 }
_gevent_test_main.result
result
Definition: _gevent_test_main.py:96
SHA1_Update
#define SHA1_Update
Definition: boringssl_prefix_symbols.h:2149
EVP_MD_type
#define EVP_MD_type
Definition: boringssl_prefix_symbols.h:1580
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
SHA_CBLOCK
#define SHA_CBLOCK
Definition: sha.h:71
ctx
Definition: benchmark-async.c:30
SHA1_Final
#define SHA1_Final
Definition: boringssl_prefix_symbols.h:2146
env_md_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/digest/internal.h:67
string.h
EVP_tls_cbc_digest_record
int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out, size_t *md_out_size, const uint8_t header[13], const uint8_t *data, size_t data_size, size_t data_plus_mac_plus_padding_size, const uint8_t *mac_secret, unsigned mac_secret_length)
Definition: tls_cbc.c:274
UINT32_MAX
#define UINT32_MAX
Definition: stdint-msvc2008.h:142
SHA1_Init
#define SHA1_Init
Definition: boringssl_prefix_symbols.h:2147
ctx
static struct test_ctx ctx
Definition: test-ipc-send-recv.c:65
SHA1_Transform
#define SHA1_Transform
Definition: boringssl_prefix_symbols.h:2148
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
OPENSSL_memset
static void * OPENSSL_memset(void *dst, int c, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:835
EVP_sha1_final_with_secret_suffix
int EVP_sha1_final_with_secret_suffix(SHA_CTX *ctx, uint8_t out[SHA_DIGEST_LENGTH], const uint8_t *in, size_t len, size_t max_len)
Definition: tls_cbc.c:177
constant_time_ge_w
static crypto_word_t constant_time_ge_w(crypto_word_t a, crypto_word_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:360
block
Block * block
Definition: protobuf/src/google/protobuf/descriptor.cc:1041
uint32_t
unsigned int uint32_t
Definition: stdint-msvc2008.h:80
constant_time_lt_8
static uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:355
in
const char * in
Definition: third_party/abseil-cpp/absl/strings/internal/str_format/parser_test.cc:391
CRYPTO_store_u32_be
static void CRYPTO_store_u32_be(void *out, uint32_t v)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:866
sha_state_st
Definition: sha.h:99
sha.h
OPENSSL_memcpy
static void * OPENSSL_memcpy(void *dst, const void *src, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:819
header
struct absl::base_internal::@2940::AllocList::Header header
overhead
static const size_t overhead
Definition: php-upb.c:1485
data
char data[kBufferLength]
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1006
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
EVP_tls_cbc_copy_mac
void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in, size_t in_len, size_t orig_len)
Definition: tls_cbc.c:114
NID_sha1
#define NID_sha1
Definition: nid.h:372
setup.idx
idx
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:197
constant_time_ge_8
static uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:367
constant_time_eq_8
static uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:401
value_barrier_w
static crypto_word_t value_barrier_w(crypto_word_t a)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:288
benchmark.md
md
Definition: benchmark.py:86
EVP_tls_cbc_remove_padding
int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len, const uint8_t *in, size_t in_len, size_t block_size, size_t mac_size)
Definition: tls_cbc.c:65
nid.h
digest.h
EVP_MAX_MD_SIZE
#define EVP_MAX_MD_SIZE
Definition: digest.h:156
EVP_tls_cbc_record_digest_supported
int EVP_tls_cbc_record_digest_supported(const EVP_MD *md)
Definition: tls_cbc.c:270
SHA_DIGEST_LENGTH
#define SHA_DIGEST_LENGTH
Definition: sha.h:74
constant_time_select_8
static uint8_t constant_time_select_8(uint8_t mask, uint8_t a, uint8_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:434
len
int len
Definition: abseil-cpp/absl/base/internal/low_level_alloc_test.cc:46
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
constant_time_eq_w
static crypto_word_t constant_time_eq_w(crypto_word_t a, crypto_word_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:394
internal.h
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
offset
voidpf uLong offset
Definition: bloaty/third_party/zlib/contrib/minizip/ioapi.h:142


grpc
Author(s):
autogenerated on Thu Mar 13 2025 03:01:40