sha512.c
Go to the documentation of this file.
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to. The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  * notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  * notice, this list of conditions and the following disclaimer in the
29  * documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  * must display the following acknowledgement:
32  * "This product includes cryptographic software written by
33  * Eric Young (eay@cryptsoft.com)"
34  * The word 'cryptographic' can be left out if the rouines from the library
35  * being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  * the apps directory (application code) you must include an acknowledgement:
38  * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed. i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/sha.h>
58 
59 #include <string.h>
60 
61 #include <openssl/mem.h>
62 
63 #include "internal.h"
64 #include "../../internal.h"
65 
66 
67 // The 32-bit hash algorithms share a common byte-order neutral collector and
68 // padding function implementations that operate on unaligned data,
69 // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
70 // this writing, so there is no need for a common collector/padding
71 // implementation yet.
72 
73 static int sha512_final_impl(uint8_t *out, SHA512_CTX *sha);
74 
76  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
77  sha->h[1] = UINT64_C(0x629a292a367cd507);
78  sha->h[2] = UINT64_C(0x9159015a3070dd17);
79  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
80  sha->h[4] = UINT64_C(0x67332667ffc00b31);
81  sha->h[5] = UINT64_C(0x8eb44a8768581511);
82  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
83  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
84 
85  sha->Nl = 0;
86  sha->Nh = 0;
87  sha->num = 0;
89  return 1;
90 }
91 
92 
94  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
95  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
96  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
97  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
98  sha->h[4] = UINT64_C(0x510e527fade682d1);
99  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
100  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
101  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
102 
103  sha->Nl = 0;
104  sha->Nh = 0;
105  sha->num = 0;
107  return 1;
108 }
109 
111  sha->h[0] = UINT64_C(0x22312194fc2bf72c);
112  sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
113  sha->h[2] = UINT64_C(0x2393b86b6f53b151);
114  sha->h[3] = UINT64_C(0x963877195940eabd);
115  sha->h[4] = UINT64_C(0x96283ee2a88effe3);
116  sha->h[5] = UINT64_C(0xbe5e1e2553863992);
117  sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
118  sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
119 
120  sha->Nl = 0;
121  sha->Nh = 0;
122  sha->num = 0;
124  return 1;
125 }
126 
127 uint8_t *SHA384(const uint8_t *data, size_t len,
129  SHA512_CTX ctx;
130  SHA384_Init(&ctx);
132  SHA384_Final(out, &ctx);
133  OPENSSL_cleanse(&ctx, sizeof(ctx));
134  return out;
135 }
136 
137 uint8_t *SHA512(const uint8_t *data, size_t len,
139  SHA512_CTX ctx;
140  SHA512_Init(&ctx);
142  SHA512_Final(out, &ctx);
143  OPENSSL_cleanse(&ctx, sizeof(ctx));
144  return out;
145 }
146 
149  SHA512_CTX ctx;
153  OPENSSL_cleanse(&ctx, sizeof(ctx));
154  return out;
155 }
156 
157 #if !defined(SHA512_ASM)
158 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
159  size_t num_blocks);
160 #endif
161 
162 
164  // |SHA384_Init| sets |sha->md_len| to |SHA384_DIGEST_LENGTH|, so this has a
165  // smaller output.
166  assert(sha->md_len == SHA384_DIGEST_LENGTH);
167  return sha512_final_impl(out, sha);
168 }
169 
170 int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
171  return SHA512_Update(sha, data, len);
172 }
173 
174 int SHA512_256_Update(SHA512_CTX *sha, const void *data, size_t len) {
175  return SHA512_Update(sha, data, len);
176 }
177 
179  // |SHA512_256_Init| sets |sha->md_len| to |SHA512_256_DIGEST_LENGTH|, so this
180  // has a |smaller output.
181  assert(sha->md_len == SHA512_256_DIGEST_LENGTH);
182  return sha512_final_impl(out, sha);
183 }
184 
187 }
188 
189 int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
190  uint64_t l;
191  uint8_t *p = c->p;
192  const uint8_t *data = in_data;
193 
194  if (len == 0) {
195  return 1;
196  }
197 
198  l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
199  if (l < c->Nl) {
200  c->Nh++;
201  }
202  if (sizeof(len) >= 8) {
203  c->Nh += (((uint64_t)len) >> 61);
204  }
205  c->Nl = l;
206 
207  if (c->num != 0) {
208  size_t n = sizeof(c->p) - c->num;
209 
210  if (len < n) {
211  OPENSSL_memcpy(p + c->num, data, len);
212  c->num += (unsigned int)len;
213  return 1;
214  } else {
215  OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
216  len -= n;
217  data += n;
218  sha512_block_data_order(c->h, p, 1);
219  }
220  }
221 
222  if (len >= sizeof(c->p)) {
223  sha512_block_data_order(c->h, data, len / sizeof(c->p));
224  data += len;
225  len %= sizeof(c->p);
226  data -= len;
227  }
228 
229  if (len != 0) {
231  c->num = (int)len;
232  }
233 
234  return 1;
235 }
236 
238  // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match
239  // the size hint, but calling code often pairs |SHA384_Init| with
240  // |SHA512_Final| and expects |sha->md_len| to carry the size over.
241  //
242  // TODO(davidben): Add an assert and fix code to match them up.
243  return sha512_final_impl(out, sha);
244 }
245 
247  uint8_t *p = sha->p;
248  size_t n = sha->num;
249 
250  p[n] = 0x80; // There always is a room for one
251  n++;
252  if (n > (sizeof(sha->p) - 16)) {
253  OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
254  n = 0;
255  sha512_block_data_order(sha->h, p, 1);
256  }
257 
258  OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
259  CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh);
260  CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl);
261 
262  sha512_block_data_order(sha->h, p, 1);
263 
264  if (out == NULL) {
265  // TODO(davidben): This NULL check is absent in other low-level hash 'final'
266  // functions and is one of the few places one can fail.
267  return 0;
268  }
269 
270  assert(sha->md_len % 8 == 0);
271  const size_t out_words = sha->md_len / 8;
272  for (size_t i = 0; i < out_words; i++) {
273  CRYPTO_store_u64_be(out, sha->h[i]);
274  out += 8;
275  }
276 
277  return 1;
278 }
279 
280 #ifndef SHA512_ASM
281 static const uint64_t K512[80] = {
282  UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
283  UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
284  UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
285  UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
286  UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
287  UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
288  UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
289  UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
290  UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
291  UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
292  UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
293  UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
294  UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
295  UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
296  UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
297  UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
298  UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
299  UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
300  UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
301  UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
302  UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
303  UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
304  UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
305  UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
306  UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
307  UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
308  UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
309  UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
310  UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
311  UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
312  UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
313  UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
314  UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
315  UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
316  UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
317  UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
318  UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
319  UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
320  UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
321  UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
322 };
323 
324 #define Sigma0(x) \
325  (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
326  CRYPTO_rotr_u64((x), 39))
327 #define Sigma1(x) \
328  (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
329  CRYPTO_rotr_u64((x), 41))
330 #define sigma0(x) \
331  (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
332 #define sigma1(x) \
333  (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
334 
335 #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
336 #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
337 
338 
339 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
340 // This code should give better results on 32-bit CPU with less than
341 // ~24 registers, both size and performance wise...
342 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
343  size_t num) {
344  uint64_t A, E, T;
345  uint64_t X[9 + 80], *F;
346  int i;
347 
348  while (num--) {
349  F = X + 80;
350  A = state[0];
351  F[1] = state[1];
352  F[2] = state[2];
353  F[3] = state[3];
354  E = state[4];
355  F[5] = state[5];
356  F[6] = state[6];
357  F[7] = state[7];
358 
359  for (i = 0; i < 16; i++, F--) {
360  T = CRYPTO_load_u64_be(in + i * 8);
361  F[0] = A;
362  F[4] = E;
363  F[8] = T;
364  T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
365  E = F[3] + T;
366  A = T + Sigma0(A) + Maj(A, F[1], F[2]);
367  }
368 
369  for (; i < 80; i++, F--) {
370  T = sigma0(F[8 + 16 - 1]);
371  T += sigma1(F[8 + 16 - 14]);
372  T += F[8 + 16] + F[8 + 16 - 9];
373 
374  F[0] = A;
375  F[4] = E;
376  F[8] = T;
377  T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
378  E = F[3] + T;
379  A = T + Sigma0(A) + Maj(A, F[1], F[2]);
380  }
381 
382  state[0] += A;
383  state[1] += F[1];
384  state[2] += F[2];
385  state[3] += F[3];
386  state[4] += E;
387  state[5] += F[5];
388  state[6] += F[6];
389  state[7] += F[7];
390 
391  in += 16 * 8;
392  }
393 }
394 
395 #else
396 
397 #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
398  do { \
399  T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
400  h = Sigma0(a) + Maj(a, b, c); \
401  d += T1; \
402  h += T1; \
403  } while (0)
404 
405 #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
406  do { \
407  s0 = X[(j + 1) & 0x0f]; \
408  s0 = sigma0(s0); \
409  s1 = X[(j + 14) & 0x0f]; \
410  s1 = sigma1(s1); \
411  T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
412  ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
413  } while (0)
414 
416  size_t num) {
417  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
418  uint64_t X[16];
419  int i;
420 
421  while (num--) {
422 
423  a = state[0];
424  b = state[1];
425  c = state[2];
426  d = state[3];
427  e = state[4];
428  f = state[5];
429  g = state[6];
430  h = state[7];
431 
432  T1 = X[0] = CRYPTO_load_u64_be(in);
433  ROUND_00_15(0, a, b, c, d, e, f, g, h);
434  T1 = X[1] = CRYPTO_load_u64_be(in + 8);
435  ROUND_00_15(1, h, a, b, c, d, e, f, g);
436  T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
437  ROUND_00_15(2, g, h, a, b, c, d, e, f);
438  T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
439  ROUND_00_15(3, f, g, h, a, b, c, d, e);
440  T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
441  ROUND_00_15(4, e, f, g, h, a, b, c, d);
442  T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
443  ROUND_00_15(5, d, e, f, g, h, a, b, c);
444  T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
445  ROUND_00_15(6, c, d, e, f, g, h, a, b);
446  T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
447  ROUND_00_15(7, b, c, d, e, f, g, h, a);
448  T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
449  ROUND_00_15(8, a, b, c, d, e, f, g, h);
450  T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
451  ROUND_00_15(9, h, a, b, c, d, e, f, g);
452  T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
453  ROUND_00_15(10, g, h, a, b, c, d, e, f);
454  T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
455  ROUND_00_15(11, f, g, h, a, b, c, d, e);
456  T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
457  ROUND_00_15(12, e, f, g, h, a, b, c, d);
458  T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
459  ROUND_00_15(13, d, e, f, g, h, a, b, c);
460  T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
461  ROUND_00_15(14, c, d, e, f, g, h, a, b);
462  T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
463  ROUND_00_15(15, b, c, d, e, f, g, h, a);
464 
465  for (i = 16; i < 80; i += 16) {
466  ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
467  ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
468  ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
469  ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
470  ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
471  ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
472  ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
473  ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
474  ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
475  ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
476  ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
477  ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
478  ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
479  ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
480  ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
481  ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
482  }
483 
484  state[0] += a;
485  state[1] += b;
486  state[2] += c;
487  state[3] += d;
488  state[4] += e;
489  state[5] += f;
490  state[6] += g;
491  state[7] += h;
492 
493  in += 16 * 8;
494  }
495 }
496 
497 #endif
498 
499 #endif // !SHA512_ASM
500 
501 #undef Sigma0
502 #undef Sigma1
503 #undef sigma0
504 #undef sigma1
505 #undef Ch
506 #undef Maj
507 #undef ROUND_00_15
508 #undef ROUND_16_80
CRYPTO_load_u64_be
static uint64_t CRYPTO_load_u64_be(const void *ptr)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:871
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
SHA512_256_Final
int SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH], SHA512_CTX *sha)
Definition: sha512.c:178
X
#define X(c)
ctx
Definition: benchmark-async.c:30
Sigma0
#define Sigma0(x)
Definition: sha512.c:324
OPENSSL_cleanse
#define OPENSSL_cleanse
Definition: boringssl_prefix_symbols.h:1864
internal.h
CRYPTO_store_u64_be
static void CRYPTO_store_u64_be(void *out, uint64_t v)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:877
sha512_final_impl
static int sha512_final_impl(uint8_t *out, SHA512_CTX *sha)
Definition: sha512.c:246
string.h
ROUND_00_15
#define ROUND_00_15(i, a, b, c, d, e, f, g, h)
Definition: sha512.c:397
ctx
static struct test_ctx ctx
Definition: test-ipc-send-recv.c:65
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
xds_manager.p
p
Definition: xds_manager.py:60
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
sha512_state_st::Nl
uint64_t Nl
Definition: sha.h:258
Maj
#define Maj(x, y, z)
Definition: sha512.c:336
OPENSSL_memset
static void * OPENSSL_memset(void *dst, int c, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:835
SHA384_Final
int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha)
Definition: sha512.c:163
T
#define T(upbtypeconst, upbtype, ctype, default_value)
block
Block * block
Definition: protobuf/src/google/protobuf/descriptor.cc:1041
SHA384_Init
int SHA384_Init(SHA512_CTX *sha)
Definition: sha512.c:75
SHA384_DIGEST_LENGTH
#define SHA384_DIGEST_LENGTH
Definition: sha.h:203
sha512_block_data_order
static void sha512_block_data_order(uint64_t *state, const uint8_t *in, size_t num_blocks)
Definition: sha512.c:415
re2::T1
@ T1
Definition: bloaty/third_party/re2/util/rune.cc:31
K512
static const uint64_t K512[80]
Definition: sha512.c:281
in
const char * in
Definition: third_party/abseil-cpp/absl/strings/internal/str_format/parser_test.cc:391
c
void c(T a)
Definition: miscompile_with_no_unique_address_test.cc:40
autogen_x86imm.f
f
Definition: autogen_x86imm.py:9
xds_interop_client.int
int
Definition: xds_interop_client.py:113
sha512_state_st::p
uint8_t p[128]
Definition: sha.h:259
SHA512_Init
int SHA512_Init(SHA512_CTX *sha)
Definition: sha512.c:93
sha.h
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
OPENSSL_memcpy
static void * OPENSSL_memcpy(void *dst, const void *src, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:819
SHA384_Update
int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len)
Definition: sha512.c:170
A
#define A(T)
SHA512_256_DIGEST_LENGTH
#define SHA512_256_DIGEST_LENGTH
Definition: sha.h:268
SHA512_DIGEST_LENGTH
#define SHA512_DIGEST_LENGTH
Definition: sha.h:230
data
char data[kBufferLength]
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1006
SHA512_Update
int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len)
Definition: sha512.c:189
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
Sigma1
#define Sigma1(x)
Definition: sha512.c:327
g
struct @717 g
d
static const fe d
Definition: curve25519_tables.h:19
UINT64_C
#define UINT64_C(val)
Definition: stdint-msvc2008.h:238
F
#define F(b, c, d)
Definition: md4.c:112
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
sha512_state_st::h
uint64_t h[8]
Definition: sha.h:257
sigma1
#define sigma1(x)
Definition: sha512.c:332
Ch
#define Ch(x, y, z)
Definition: sha512.c:335
SHA512_Transform
void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK])
Definition: sha512.c:185
SHA512_256_Update
int SHA512_256_Update(SHA512_CTX *sha, const void *data, size_t len)
Definition: sha512.c:174
SHA512_256_Init
int SHA512_256_Init(SHA512_CTX *sha)
Definition: sha512.c:110
A
Definition: miscompile_with_no_unique_address_test.cc:23
SHA512_Final
int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha)
Definition: sha512.c:237
SHA512
uint8_t * SHA512(const uint8_t *data, size_t len, uint8_t out[SHA512_DIGEST_LENGTH])
Definition: sha512.c:137
xds_manager.num
num
Definition: xds_manager.py:56
sha512_state_st::md_len
unsigned md_len
Definition: sha.h:260
state
Definition: bloaty/third_party/zlib/contrib/blast/blast.c:41
sha512_state_st::num
unsigned num
Definition: sha.h:260
SHA512_256
uint8_t * SHA512_256(const uint8_t *data, size_t len, uint8_t out[SHA512_256_DIGEST_LENGTH])
Definition: sha512.c:147
mem.h
len
int len
Definition: abseil-cpp/absl/base/internal/low_level_alloc_test.cc:46
SHA384
uint8_t * SHA384(const uint8_t *data, size_t len, uint8_t out[SHA384_DIGEST_LENGTH])
Definition: sha512.c:127
run_grpclb_interop_tests.l
dictionary l
Definition: run_grpclb_interop_tests.py:410
sha512_state_st::Nh
uint64_t Nh
Definition: sha.h:258
sigma0
#define sigma0(x)
Definition: sha512.c:330
SHA512_CBLOCK
#define SHA512_CBLOCK
Definition: sha.h:227
if
if(p->owned &&p->wrapped !=NULL)
Definition: call.c:42
sha512_state_st
Definition: sha.h:256
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
ROUND_16_80
#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)
Definition: sha512.c:405


grpc
Author(s):
autogenerated on Fri May 16 2025 03:00:12