scrypt.c
Go to the documentation of this file.
1 /*
2  * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License"). You may not use
5  * this file except in compliance with the License. You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <openssl/evp.h>
11 
12 #include <assert.h>
13 
14 #include <openssl/err.h>
15 #include <openssl/mem.h>
16 #include <openssl/type_check.h>
17 
18 #include "../internal.h"
19 
20 
21 // This file implements scrypt, described in RFC 7914.
22 //
23 // Note scrypt refers to both "blocks" and a "block size" parameter, r. These
24 // are two different notions of blocks. A Salsa20 block is 64 bytes long,
25 // represented in this implementation by 16 |uint32_t|s. |r| determines the
26 // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r|
27 // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and
28 // scrypt blocks, respectively.
29 
30 // A block_t is a Salsa20 block.
31 typedef struct { uint32_t words[16]; } block_t;
32 
33 OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding");
34 
35 // salsa208_word_specification implements the Salsa20/8 core function, also
36 // described in RFC 7914, section 3. It modifies the block at |inout|
37 // in-place.
38 static void salsa208_word_specification(block_t *inout) {
39  block_t x;
40  OPENSSL_memcpy(&x, inout, sizeof(x));
41 
42  for (int i = 8; i > 0; i -= 2) {
43  x.words[4] ^= CRYPTO_rotl_u32(x.words[0] + x.words[12], 7);
44  x.words[8] ^= CRYPTO_rotl_u32(x.words[4] + x.words[0], 9);
45  x.words[12] ^= CRYPTO_rotl_u32(x.words[8] + x.words[4], 13);
46  x.words[0] ^= CRYPTO_rotl_u32(x.words[12] + x.words[8], 18);
47  x.words[9] ^= CRYPTO_rotl_u32(x.words[5] + x.words[1], 7);
48  x.words[13] ^= CRYPTO_rotl_u32(x.words[9] + x.words[5], 9);
49  x.words[1] ^= CRYPTO_rotl_u32(x.words[13] + x.words[9], 13);
50  x.words[5] ^= CRYPTO_rotl_u32(x.words[1] + x.words[13], 18);
51  x.words[14] ^= CRYPTO_rotl_u32(x.words[10] + x.words[6], 7);
52  x.words[2] ^= CRYPTO_rotl_u32(x.words[14] + x.words[10], 9);
53  x.words[6] ^= CRYPTO_rotl_u32(x.words[2] + x.words[14], 13);
54  x.words[10] ^= CRYPTO_rotl_u32(x.words[6] + x.words[2], 18);
55  x.words[3] ^= CRYPTO_rotl_u32(x.words[15] + x.words[11], 7);
56  x.words[7] ^= CRYPTO_rotl_u32(x.words[3] + x.words[15], 9);
57  x.words[11] ^= CRYPTO_rotl_u32(x.words[7] + x.words[3], 13);
58  x.words[15] ^= CRYPTO_rotl_u32(x.words[11] + x.words[7], 18);
59  x.words[1] ^= CRYPTO_rotl_u32(x.words[0] + x.words[3], 7);
60  x.words[2] ^= CRYPTO_rotl_u32(x.words[1] + x.words[0], 9);
61  x.words[3] ^= CRYPTO_rotl_u32(x.words[2] + x.words[1], 13);
62  x.words[0] ^= CRYPTO_rotl_u32(x.words[3] + x.words[2], 18);
63  x.words[6] ^= CRYPTO_rotl_u32(x.words[5] + x.words[4], 7);
64  x.words[7] ^= CRYPTO_rotl_u32(x.words[6] + x.words[5], 9);
65  x.words[4] ^= CRYPTO_rotl_u32(x.words[7] + x.words[6], 13);
66  x.words[5] ^= CRYPTO_rotl_u32(x.words[4] + x.words[7], 18);
67  x.words[11] ^= CRYPTO_rotl_u32(x.words[10] + x.words[9], 7);
68  x.words[8] ^= CRYPTO_rotl_u32(x.words[11] + x.words[10], 9);
69  x.words[9] ^= CRYPTO_rotl_u32(x.words[8] + x.words[11], 13);
70  x.words[10] ^= CRYPTO_rotl_u32(x.words[9] + x.words[8], 18);
71  x.words[12] ^= CRYPTO_rotl_u32(x.words[15] + x.words[14], 7);
72  x.words[13] ^= CRYPTO_rotl_u32(x.words[12] + x.words[15], 9);
73  x.words[14] ^= CRYPTO_rotl_u32(x.words[13] + x.words[12], 13);
74  x.words[15] ^= CRYPTO_rotl_u32(x.words[14] + x.words[13], 18);
75  }
76 
77  for (int i = 0; i < 16; ++i) {
78  inout->words[i] += x.words[i];
79  }
80 }
81 
82 // xor_block sets |*out| to be |*a| XOR |*b|.
83 static void xor_block(block_t *out, const block_t *a, const block_t *b) {
84  for (size_t i = 0; i < 16; i++) {
85  out->words[i] = a->words[i] ^ b->words[i];
86  }
87 }
88 
89 // scryptBlockMix implements the function described in RFC 7914, section 4. B'
90 // is written to |out|. |out| and |B| may not alias and must be each one scrypt
91 // block (2 * |r| Salsa20 blocks) long.
92 static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) {
93  assert(out != B);
94 
95  block_t X;
96  OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X));
97  for (uint64_t i = 0; i < r * 2; i++) {
98  xor_block(&X, &X, &B[i]);
100 
101  // This implements the permutation in step 3.
102  OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X));
103  }
104 }
105 
106 // scryptROMix implements the function described in RFC 7914, section 5. |B| is
107 // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and
108 // |V| are scratch space allocated by the caller. |T| must have space for one
109 // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt
110 // blocks (2 * |r| * |N| Salsa20 blocks).
112  block_t *V) {
113  // Steps 1 and 2.
114  OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t));
115  for (uint64_t i = 1; i < N; i++) {
116  scryptBlockMix(&V[2 * r * i /* scrypt block i */],
117  &V[2 * r * (i - 1) /* scrypt block i-1 */], r);
118  }
119  scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r);
120 
121  // Step 3.
122  for (uint64_t i = 0; i < N; i++) {
123  // Note this assumes |N| <= 2^32 and is a power of 2.
124  uint32_t j = B[2 * r - 1].words[0] & (N - 1);
125  for (size_t k = 0; k < 2 * r; k++) {
126  xor_block(&T[k], &B[k], &V[2 * r * j + k]);
127  }
128  scryptBlockMix(B, T, r);
129  }
130 }
131 
132 // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the
133 // bounds on p in section 6:
134 //
135 // p <= ((2^32-1) * hLen) / MFLen iff
136 // p <= ((2^32-1) * 32) / (128 * r) iff
137 // p * r <= (2^30-1)
138 #define SCRYPT_PR_MAX ((1 << 30) - 1)
139 
140 // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by
141 // |EVP_PBE_scrypt|.
142 #define SCRYPT_MAX_MEM (1024 * 1024 * 32)
143 
144 int EVP_PBE_scrypt(const char *password, size_t password_len,
145  const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r,
146  uint64_t p, size_t max_mem, uint8_t *out_key,
147  size_t key_len) {
148  if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r ||
149  // |N| must be a power of two.
150  N < 2 || (N & (N - 1)) ||
151  // We only support |N| <= 2^32 in |scryptROMix|.
152  N > UINT64_C(1) << 32 ||
153  // Check that |N| < 2^(128×r / 8).
154  (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) {
156  return 0;
157  }
158 
159  // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N|
160  // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s.
161  if (max_mem == 0) {
162  max_mem = SCRYPT_MAX_MEM;
163  }
164 
165  size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t));
166  if (max_scrypt_blocks < p + 1 ||
167  max_scrypt_blocks - p - 1 < N) {
169  return 0;
170  }
171 
172  // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which
173  // is no bigger than uint64_t, so none of these operations may overflow.
174  OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t");
175  size_t B_blocks = p * 2 * r;
176  size_t B_bytes = B_blocks * sizeof(block_t);
177  size_t T_blocks = 2 * r;
178  size_t V_blocks = N * 2 * r;
179  block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t));
180  if (B == NULL) {
182  return 0;
183  }
184 
185  int ret = 0;
186  block_t *T = B + B_blocks;
187  block_t *V = T + T_blocks;
188 
189  // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure
190  // or |iterations| of 0 (we pass 1 here). This is consistent with
191  // the documented failure conditions of EVP_PBE_scrypt.
192  if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1,
193  EVP_sha256(), B_bytes, (uint8_t *)B)) {
194  goto err;
195  }
196 
197  for (uint64_t i = 0; i < p; i++) {
198  scryptROMix(B + 2 * r * i, r, N, T, V);
199  }
200 
201  if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1,
202  EVP_sha256(), key_len, out_key)) {
203  goto err;
204  }
205 
206  ret = 1;
207 
208 err:
209  OPENSSL_free(B);
210  return ret;
211 }
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
X
#define X(c)
evp.h
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
UINT64_MAX
#define UINT64_MAX
Definition: stdint-msvc2008.h:143
error_ref_leak.err
err
Definition: error_ref_leak.py:35
words
std::vector< std::string > words
Definition: bloaty/third_party/protobuf/src/google/protobuf/repeated_field_unittest.cc:1787
CRYPTO_rotl_u32
static uint32_t CRYPTO_rotl_u32(uint32_t value, int shift)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:899
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
xds_manager.p
p
Definition: xds_manager.py:60
EVP_sha256
const OPENSSL_EXPORT EVP_MD * EVP_sha256(void)
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
setup.k
k
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:42
T
#define T(upbtypeconst, upbtype, ctype, default_value)
scryptROMix
static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, block_t *V)
Definition: scrypt.c:111
uint32_t
unsigned int uint32_t
Definition: stdint-msvc2008.h:80
OPENSSL_malloc
#define OPENSSL_malloc
Definition: boringssl_prefix_symbols.h:1885
EVP_R_INVALID_PARAMETERS
#define EVP_R_INVALID_PARAMETERS
Definition: evp_errors.h:93
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
OPENSSL_memcpy
static void * OPENSSL_memcpy(void *dst, const void *src, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:819
err.h
SCRYPT_MAX_MEM
#define SCRYPT_MAX_MEM
Definition: scrypt.c:142
EVP_PBE_scrypt
int EVP_PBE_scrypt(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, uint64_t p, size_t max_mem, uint8_t *out_key, size_t key_len)
Definition: scrypt.c:144
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
UINT64_C
#define UINT64_C(val)
Definition: stdint-msvc2008.h:238
OPENSSL_STATIC_ASSERT
OPENSSL_STATIC_ASSERT(sizeof(block_t)==64, "block_t has padding")
SCRYPT_PR_MAX
#define SCRYPT_PR_MAX
Definition: scrypt.c:138
N
#define N
Definition: sync_test.cc:37
PKCS5_PBKDF2_HMAC
#define PKCS5_PBKDF2_HMAC
Definition: boringssl_prefix_symbols.h:2009
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
scryptBlockMix
static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r)
Definition: scrypt.c:92
salsa208_word_specification
static void salsa208_word_specification(block_t *inout)
Definition: scrypt.c:38
block_t::words
uint32_t words[16]
Definition: scrypt.c:31
fix_build_deps.r
r
Definition: fix_build_deps.py:491
xor_block
static void xor_block(block_t *out, const block_t *a, const block_t *b)
Definition: scrypt.c:83
mem.h
type_check.h
OPENSSL_free
#define OPENSSL_free
Definition: boringssl_prefix_symbols.h:1869
block_t
Definition: scrypt.c:31
EVP_R_MEMORY_LIMIT_EXCEEDED
#define EVP_R_MEMORY_LIMIT_EXCEEDED
Definition: evp_errors.h:92
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
ERR_R_MALLOC_FAILURE
#define ERR_R_MALLOC_FAILURE
Definition: err.h:371


grpc
Author(s):
autogenerated on Thu Mar 13 2025 03:01:15