re2/re2/parse.cc
Go to the documentation of this file.
1 // Copyright 2006 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // Regular expression parser.
6 
7 // The parser is a simple precedence-based parser with a
8 // manual stack. The parsing work is done by the methods
9 // of the ParseState class. The Regexp::Parse function is
10 // essentially just a lexer that calls the ParseState method
11 // for each token.
12 
13 // The parser recognizes POSIX extended regular expressions
14 // excluding backreferences, collating elements, and collating
15 // classes. It also allows the empty string as a regular expression
16 // and recognizes the Perl escape sequences \d, \s, \w, \D, \S, and \W.
17 // See regexp.h for rationale.
18 
19 #include <ctype.h>
20 #include <stddef.h>
21 #include <stdint.h>
22 #include <string.h>
23 #include <algorithm>
24 #include <map>
25 #include <string>
26 #include <vector>
27 
28 #include "util/util.h"
29 #include "util/logging.h"
30 #include "util/strutil.h"
31 #include "util/utf.h"
32 #include "re2/pod_array.h"
33 #include "re2/regexp.h"
34 #include "re2/stringpiece.h"
35 #include "re2/unicode_casefold.h"
36 #include "re2/unicode_groups.h"
37 #include "re2/walker-inl.h"
38 
39 #if defined(RE2_USE_ICU)
40 #include "unicode/uniset.h"
41 #include "unicode/unistr.h"
42 #include "unicode/utypes.h"
43 #endif
44 
45 namespace re2 {
46 
47 // Controls the maximum repeat count permitted by the parser.
48 static int maximum_repeat_count = 1000;
49 
52 }
53 
54 // Regular expression parse state.
55 // The list of parsed regexps so far is maintained as a vector of
56 // Regexp pointers called the stack. Left parenthesis and vertical
57 // bar markers are also placed on the stack, as Regexps with
58 // non-standard opcodes.
59 // Scanning a left parenthesis causes the parser to push a left parenthesis
60 // marker on the stack.
61 // Scanning a vertical bar causes the parser to pop the stack until it finds a
62 // vertical bar or left parenthesis marker (not popping the marker),
63 // concatenate all the popped results, and push them back on
64 // the stack (DoConcatenation).
65 // Scanning a right parenthesis causes the parser to act as though it
66 // has seen a vertical bar, which then leaves the top of the stack in the
67 // form LeftParen regexp VerticalBar regexp VerticalBar ... regexp VerticalBar.
68 // The parser pops all this off the stack and creates an alternation of the
69 // regexps (DoAlternation).
70 
71 class Regexp::ParseState {
72  public:
73  ParseState(ParseFlags flags, const StringPiece& whole_regexp,
75  ~ParseState();
76 
77  ParseFlags flags() { return flags_; }
78  int rune_max() { return rune_max_; }
79 
80  // Parse methods. All public methods return a bool saying
81  // whether parsing should continue. If a method returns
82  // false, it has set fields in *status_, and the parser
83  // should return NULL.
84 
85  // Pushes the given regular expression onto the stack.
86  // Could check for too much memory used here.
87  bool PushRegexp(Regexp* re);
88 
89  // Pushes the literal rune r onto the stack.
90  bool PushLiteral(Rune r);
91 
92  // Pushes a regexp with the given op (and no args) onto the stack.
93  bool PushSimpleOp(RegexpOp op);
94 
95  // Pushes a ^ onto the stack.
96  bool PushCaret();
97 
98  // Pushes a \b (word == true) or \B (word == false) onto the stack.
99  bool PushWordBoundary(bool word);
100 
101  // Pushes a $ onto the stack.
102  bool PushDollar();
103 
104  // Pushes a . onto the stack
105  bool PushDot();
106 
107  // Pushes a repeat operator regexp onto the stack.
108  // A valid argument for the operator must already be on the stack.
109  // s is the name of the operator, for use in error messages.
110  bool PushRepeatOp(RegexpOp op, const StringPiece& s, bool nongreedy);
111 
112  // Pushes a repetition regexp onto the stack.
113  // A valid argument for the operator must already be on the stack.
114  bool PushRepetition(int min, int max, const StringPiece& s, bool nongreedy);
115 
116  // Checks whether a particular regexp op is a marker.
117  bool IsMarker(RegexpOp op);
118 
119  // Processes a left parenthesis in the input.
120  // Pushes a marker onto the stack.
121  bool DoLeftParen(const StringPiece& name);
122  bool DoLeftParenNoCapture();
123 
124  // Processes a vertical bar in the input.
125  bool DoVerticalBar();
126 
127  // Processes a right parenthesis in the input.
128  bool DoRightParen();
129 
130  // Processes the end of input, returning the final regexp.
131  Regexp* DoFinish();
132 
133  // Finishes the regexp if necessary, preparing it for use
134  // in a more complicated expression.
135  // If it is a CharClassBuilder, converts into a CharClass.
137 
138  // These routines don't manipulate the parse stack
139  // directly, but they do need to look at flags_.
140  // ParseCharClass also manipulates the internals of Regexp
141  // while creating *out_re.
142 
143  // Parse a character class into *out_re.
144  // Removes parsed text from s.
145  bool ParseCharClass(StringPiece* s, Regexp** out_re,
147 
148  // Parse a character class character into *rp.
149  // Removes parsed text from s.
150  bool ParseCCCharacter(StringPiece* s, Rune *rp,
151  const StringPiece& whole_class,
153 
154  // Parse a character class range into rr.
155  // Removes parsed text from s.
156  bool ParseCCRange(StringPiece* s, RuneRange* rr,
157  const StringPiece& whole_class,
159 
160  // Parse a Perl flag set or non-capturing group from s.
161  bool ParsePerlFlags(StringPiece* s);
162 
163 
164  // Finishes the current concatenation,
165  // collapsing it into a single regexp on the stack.
166  void DoConcatenation();
167 
168  // Finishes the current alternation,
169  // collapsing it to a single regexp on the stack.
170  void DoAlternation();
171 
172  // Generalized DoAlternation/DoConcatenation.
173  void DoCollapse(RegexpOp op);
174 
175  // Maybe concatenate Literals into LiteralString.
176  bool MaybeConcatString(int r, ParseFlags flags);
177 
178 private:
182  Regexp* stacktop_;
183  int ncap_; // number of capturing parens seen
184  int rune_max_; // maximum char value for this encoding
185 
186  ParseState(const ParseState&) = delete;
187  ParseState& operator=(const ParseState&) = delete;
188 };
189 
190 // Pseudo-operators - only on parse stack.
191 const RegexpOp kLeftParen = static_cast<RegexpOp>(kMaxRegexpOp+1);
192 const RegexpOp kVerticalBar = static_cast<RegexpOp>(kMaxRegexpOp+2);
193 
195  const StringPiece& whole_regexp,
197  : flags_(flags), whole_regexp_(whole_regexp),
198  status_(status), stacktop_(NULL), ncap_(0) {
199  if (flags_ & Latin1)
200  rune_max_ = 0xFF;
201  else
202  rune_max_ = Runemax;
203 }
204 
205 // Cleans up by freeing all the regexps on the stack.
207  Regexp* next;
208  for (Regexp* re = stacktop_; re != NULL; re = next) {
209  next = re->down_;
210  re->down_ = NULL;
211  if (re->op() == kLeftParen)
212  delete re->name_;
213  re->Decref();
214  }
215 }
216 
217 // Finishes the regexp if necessary, preparing it for use in
218 // a more complex expression.
219 // If it is a CharClassBuilder, converts into a CharClass.
221  if (re == NULL)
222  return NULL;
223  re->down_ = NULL;
224 
225  if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
226  CharClassBuilder* ccb = re->ccb_;
227  re->ccb_ = NULL;
228  re->cc_ = ccb->GetCharClass();
229  delete ccb;
230  }
231 
232  return re;
233 }
234 
235 // Pushes the given regular expression onto the stack.
236 // Could check for too much memory used here.
238  MaybeConcatString(-1, NoParseFlags);
239 
240  // Special case: a character class of one character is just
241  // a literal. This is a common idiom for escaping
242  // single characters (e.g., [.] instead of \.), and some
243  // analysis does better with fewer character classes.
244  // Similarly, [Aa] can be rewritten as a literal A with ASCII case folding.
245  if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
246  re->ccb_->RemoveAbove(rune_max_);
247  if (re->ccb_->size() == 1) {
248  Rune r = re->ccb_->begin()->lo;
249  re->Decref();
250  re = new Regexp(kRegexpLiteral, flags_);
251  re->rune_ = r;
252  } else if (re->ccb_->size() == 2) {
253  Rune r = re->ccb_->begin()->lo;
254  if ('A' <= r && r <= 'Z' && re->ccb_->Contains(r + 'a' - 'A')) {
255  re->Decref();
256  re = new Regexp(kRegexpLiteral, flags_ | FoldCase);
257  re->rune_ = r + 'a' - 'A';
258  }
259  }
260  }
261 
262  if (!IsMarker(re->op()))
263  re->simple_ = re->ComputeSimple();
264  re->down_ = stacktop_;
265  stacktop_ = re;
266  return true;
267 }
268 
269 // Searches the case folding tables and returns the CaseFold* that contains r.
270 // If there isn't one, returns the CaseFold* with smallest f->lo bigger than r.
271 // If there isn't one, returns NULL.
272 const CaseFold* LookupCaseFold(const CaseFold *f, int n, Rune r) {
273  const CaseFold* ef = f + n;
274 
275  // Binary search for entry containing r.
276  while (n > 0) {
277  int m = n/2;
278  if (f[m].lo <= r && r <= f[m].hi)
279  return &f[m];
280  if (r < f[m].lo) {
281  n = m;
282  } else {
283  f += m+1;
284  n -= m+1;
285  }
286  }
287 
288  // There is no entry that contains r, but f points
289  // where it would have been. Unless f points at
290  // the end of the array, it points at the next entry
291  // after r.
292  if (f < ef)
293  return f;
294 
295  // No entry contains r; no entry contains runes > r.
296  return NULL;
297 }
298 
299 // Returns the result of applying the fold f to the rune r.
300 Rune ApplyFold(const CaseFold *f, Rune r) {
301  switch (f->delta) {
302  default:
303  return r + f->delta;
304 
305  case EvenOddSkip: // even <-> odd but only applies to every other
306  if ((r - f->lo) % 2)
307  return r;
309  case EvenOdd: // even <-> odd
310  if (r%2 == 0)
311  return r + 1;
312  return r - 1;
313 
314  case OddEvenSkip: // odd <-> even but only applies to every other
315  if ((r - f->lo) % 2)
316  return r;
318  case OddEven: // odd <-> even
319  if (r%2 == 1)
320  return r + 1;
321  return r - 1;
322  }
323 }
324 
325 // Returns the next Rune in r's folding cycle (see unicode_casefold.h).
326 // Examples:
327 // CycleFoldRune('A') = 'a'
328 // CycleFoldRune('a') = 'A'
329 //
330 // CycleFoldRune('K') = 'k'
331 // CycleFoldRune('k') = 0x212A (Kelvin)
332 // CycleFoldRune(0x212A) = 'K'
333 //
334 // CycleFoldRune('?') = '?'
337  if (f == NULL || r < f->lo)
338  return r;
339  return ApplyFold(f, r);
340 }
341 
342 // Add lo-hi to the class, along with their fold-equivalent characters.
343 // If lo-hi is already in the class, assume that the fold-equivalent
344 // chars are there too, so there's no work to do.
345 static void AddFoldedRange(CharClassBuilder* cc, Rune lo, Rune hi, int depth) {
346  // AddFoldedRange calls itself recursively for each rune in the fold cycle.
347  // Most folding cycles are small: there aren't any bigger than four in the
348  // current Unicode tables. make_unicode_casefold.py checks that
349  // the cycles are not too long, and we double-check here using depth.
350  if (depth > 10) {
351  LOG(DFATAL) << "AddFoldedRange recurses too much.";
352  return;
353  }
354 
355  if (!cc->AddRange(lo, hi)) // lo-hi was already there? we're done
356  return;
357 
358  while (lo <= hi) {
360  if (f == NULL) // lo has no fold, nor does anything above lo
361  break;
362  if (lo < f->lo) { // lo has no fold; next rune with a fold is f->lo
363  lo = f->lo;
364  continue;
365  }
366 
367  // Add in the result of folding the range lo - f->hi
368  // and that range's fold, recursively.
369  Rune lo1 = lo;
370  Rune hi1 = std::min<Rune>(hi, f->hi);
371  switch (f->delta) {
372  default:
373  lo1 += f->delta;
374  hi1 += f->delta;
375  break;
376  case EvenOdd:
377  if (lo1%2 == 1)
378  lo1--;
379  if (hi1%2 == 0)
380  hi1++;
381  break;
382  case OddEven:
383  if (lo1%2 == 0)
384  lo1--;
385  if (hi1%2 == 1)
386  hi1++;
387  break;
388  }
389  AddFoldedRange(cc, lo1, hi1, depth+1);
390 
391  // Pick up where this fold left off.
392  lo = f->hi + 1;
393  }
394 }
395 
396 // Pushes the literal rune r onto the stack.
398  // Do case folding if needed.
399  if ((flags_ & FoldCase) && CycleFoldRune(r) != r) {
400  Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
401  re->ccb_ = new CharClassBuilder;
402  Rune r1 = r;
403  do {
404  if (!(flags_ & NeverNL) || r != '\n') {
405  re->ccb_->AddRange(r, r);
406  }
407  r = CycleFoldRune(r);
408  } while (r != r1);
409  return PushRegexp(re);
410  }
411 
412  // Exclude newline if applicable.
413  if ((flags_ & NeverNL) && r == '\n')
414  return PushRegexp(new Regexp(kRegexpNoMatch, flags_));
415 
416  // No fancy stuff worked. Ordinary literal.
417  if (MaybeConcatString(r, flags_))
418  return true;
419 
420  Regexp* re = new Regexp(kRegexpLiteral, flags_);
421  re->rune_ = r;
422  return PushRegexp(re);
423 }
424 
425 // Pushes a ^ onto the stack.
427  if (flags_ & OneLine) {
428  return PushSimpleOp(kRegexpBeginText);
429  }
430  return PushSimpleOp(kRegexpBeginLine);
431 }
432 
433 // Pushes a \b or \B onto the stack.
434 bool Regexp::ParseState::PushWordBoundary(bool word) {
435  if (word)
436  return PushSimpleOp(kRegexpWordBoundary);
437  return PushSimpleOp(kRegexpNoWordBoundary);
438 }
439 
440 // Pushes a $ onto the stack.
442  if (flags_ & OneLine) {
443  // Clumsy marker so that MimicsPCRE() can tell whether
444  // this kRegexpEndText was a $ and not a \z.
445  Regexp::ParseFlags oflags = flags_;
446  flags_ = flags_ | WasDollar;
447  bool ret = PushSimpleOp(kRegexpEndText);
448  flags_ = oflags;
449  return ret;
450  }
451  return PushSimpleOp(kRegexpEndLine);
452 }
453 
454 // Pushes a . onto the stack.
456  if ((flags_ & DotNL) && !(flags_ & NeverNL))
457  return PushSimpleOp(kRegexpAnyChar);
458  // Rewrite . into [^\n]
459  Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
460  re->ccb_ = new CharClassBuilder;
461  re->ccb_->AddRange(0, '\n' - 1);
462  re->ccb_->AddRange('\n' + 1, rune_max_);
463  return PushRegexp(re);
464 }
465 
466 // Pushes a regexp with the given op (and no args) onto the stack.
468  Regexp* re = new Regexp(op, flags_);
469  return PushRegexp(re);
470 }
471 
472 // Pushes a repeat operator regexp onto the stack.
473 // A valid argument for the operator must already be on the stack.
474 // The char c is the name of the operator, for use in error messages.
475 bool Regexp::ParseState::PushRepeatOp(RegexpOp op, const StringPiece& s,
476  bool nongreedy) {
477  if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
478  status_->set_code(kRegexpRepeatArgument);
479  status_->set_error_arg(s);
480  return false;
481  }
482  Regexp::ParseFlags fl = flags_;
483  if (nongreedy)
484  fl = fl ^ NonGreedy;
485 
486  // Squash **, ++ and ??. Regexp::Star() et al. handle this too, but
487  // they're mostly for use during simplification, not during parsing.
488  if (op == stacktop_->op() && fl == stacktop_->parse_flags())
489  return true;
490 
491  // Squash *+, *?, +*, +?, ?* and ?+. They all squash to *, so because
492  // op is a repeat, we just have to check that stacktop_->op() is too,
493  // then adjust stacktop_.
494  if ((stacktop_->op() == kRegexpStar ||
495  stacktop_->op() == kRegexpPlus ||
496  stacktop_->op() == kRegexpQuest) &&
497  fl == stacktop_->parse_flags()) {
498  stacktop_->op_ = kRegexpStar;
499  return true;
500  }
501 
502  Regexp* re = new Regexp(op, fl);
503  re->AllocSub(1);
504  re->down_ = stacktop_->down_;
505  re->sub()[0] = FinishRegexp(stacktop_);
506  re->simple_ = re->ComputeSimple();
507  stacktop_ = re;
508  return true;
509 }
510 
511 // RepetitionWalker reports whether the repetition regexp is valid.
512 // Valid means that the combination of the top-level repetition
513 // and any inner repetitions does not exceed n copies of the
514 // innermost thing.
515 // This rewalks the regexp tree and is called for every repetition,
516 // so we have to worry about inducing quadratic behavior in the parser.
517 // We avoid this by only using RepetitionWalker when min or max >= 2.
518 // In that case the depth of any >= 2 nesting can only get to 9 without
519 // triggering a parse error, so each subtree can only be rewalked 9 times.
520 class RepetitionWalker : public Regexp::Walker<int> {
521  public:
523  virtual int PreVisit(Regexp* re, int parent_arg, bool* stop);
524  virtual int PostVisit(Regexp* re, int parent_arg, int pre_arg,
525  int* child_args, int nchild_args);
526  virtual int ShortVisit(Regexp* re, int parent_arg);
527 
528  private:
529  RepetitionWalker(const RepetitionWalker&) = delete;
530  RepetitionWalker& operator=(const RepetitionWalker&) = delete;
531 };
532 
533 int RepetitionWalker::PreVisit(Regexp* re, int parent_arg, bool* stop) {
534  int arg = parent_arg;
535  if (re->op() == kRegexpRepeat) {
536  int m = re->max();
537  if (m < 0) {
538  m = re->min();
539  }
540  if (m > 0) {
541  arg /= m;
542  }
543  }
544  return arg;
545 }
546 
547 int RepetitionWalker::PostVisit(Regexp* re, int parent_arg, int pre_arg,
548  int* child_args, int nchild_args) {
549  int arg = pre_arg;
550  for (int i = 0; i < nchild_args; i++) {
551  if (child_args[i] < arg) {
552  arg = child_args[i];
553  }
554  }
555  return arg;
556 }
557 
558 int RepetitionWalker::ShortVisit(Regexp* re, int parent_arg) {
559  // Should never be called: we use Walk(), not WalkExponential().
560 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
561  LOG(DFATAL) << "RepetitionWalker::ShortVisit called";
562 #endif
563  return 0;
564 }
565 
566 // Pushes a repetition regexp onto the stack.
567 // A valid argument for the operator must already be on the stack.
569  const StringPiece& s,
570  bool nongreedy) {
571  if ((max != -1 && max < min) ||
574  status_->set_code(kRegexpRepeatSize);
575  status_->set_error_arg(s);
576  return false;
577  }
578  if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
579  status_->set_code(kRegexpRepeatArgument);
580  status_->set_error_arg(s);
581  return false;
582  }
583  Regexp::ParseFlags fl = flags_;
584  if (nongreedy)
585  fl = fl ^ NonGreedy;
586  Regexp* re = new Regexp(kRegexpRepeat, fl);
587  re->min_ = min;
588  re->max_ = max;
589  re->AllocSub(1);
590  re->down_ = stacktop_->down_;
591  re->sub()[0] = FinishRegexp(stacktop_);
592  re->simple_ = re->ComputeSimple();
593  stacktop_ = re;
594  if (min >= 2 || max >= 2) {
595  RepetitionWalker w;
596  if (w.Walk(stacktop_, maximum_repeat_count) == 0) {
597  status_->set_code(kRegexpRepeatSize);
598  status_->set_error_arg(s);
599  return false;
600  }
601  }
602  return true;
603 }
604 
605 // Checks whether a particular regexp op is a marker.
607  return op >= kLeftParen;
608 }
609 
610 // Processes a left parenthesis in the input.
611 // Pushes a marker onto the stack.
612 bool Regexp::ParseState::DoLeftParen(const StringPiece& name) {
613  Regexp* re = new Regexp(kLeftParen, flags_);
614  re->cap_ = ++ncap_;
615  if (name.data() != NULL)
616  re->name_ = new std::string(name);
617  return PushRegexp(re);
618 }
619 
620 // Pushes a non-capturing marker onto the stack.
622  Regexp* re = new Regexp(kLeftParen, flags_);
623  re->cap_ = -1;
624  return PushRegexp(re);
625 }
626 
627 // Processes a vertical bar in the input.
629  MaybeConcatString(-1, NoParseFlags);
630  DoConcatenation();
631 
632  // Below the vertical bar is a list to alternate.
633  // Above the vertical bar is a list to concatenate.
634  // We just did the concatenation, so either swap
635  // the result below the vertical bar or push a new
636  // vertical bar on the stack.
637  Regexp* r1;
638  Regexp* r2;
639  if ((r1 = stacktop_) != NULL &&
640  (r2 = r1->down_) != NULL &&
641  r2->op() == kVerticalBar) {
642  Regexp* r3;
643  if ((r3 = r2->down_) != NULL &&
644  (r1->op() == kRegexpAnyChar || r3->op() == kRegexpAnyChar)) {
645  // AnyChar is above or below the vertical bar. Let it subsume
646  // the other when the other is Literal, CharClass or AnyChar.
647  if (r3->op() == kRegexpAnyChar &&
648  (r1->op() == kRegexpLiteral ||
649  r1->op() == kRegexpCharClass ||
650  r1->op() == kRegexpAnyChar)) {
651  // Discard r1.
652  stacktop_ = r2;
653  r1->Decref();
654  return true;
655  }
656  if (r1->op() == kRegexpAnyChar &&
657  (r3->op() == kRegexpLiteral ||
658  r3->op() == kRegexpCharClass ||
659  r3->op() == kRegexpAnyChar)) {
660  // Rearrange the stack and discard r3.
661  r1->down_ = r3->down_;
662  r2->down_ = r1;
663  stacktop_ = r2;
664  r3->Decref();
665  return true;
666  }
667  }
668  // Swap r1 below vertical bar (r2).
669  r1->down_ = r2->down_;
670  r2->down_ = r1;
671  stacktop_ = r2;
672  return true;
673  }
674  return PushSimpleOp(kVerticalBar);
675 }
676 
677 // Processes a right parenthesis in the input.
679  // Finish the current concatenation and alternation.
680  DoAlternation();
681 
682  // The stack should be: LeftParen regexp
683  // Remove the LeftParen, leaving the regexp,
684  // parenthesized.
685  Regexp* r1;
686  Regexp* r2;
687  if ((r1 = stacktop_) == NULL ||
688  (r2 = r1->down_) == NULL ||
689  r2->op() != kLeftParen) {
690  status_->set_code(kRegexpUnexpectedParen);
691  status_->set_error_arg(whole_regexp_);
692  return false;
693  }
694 
695  // Pop off r1, r2. Will Decref or reuse below.
696  stacktop_ = r2->down_;
697 
698  // Restore flags from when paren opened.
699  Regexp* re = r2;
700  flags_ = re->parse_flags();
701 
702  // Rewrite LeftParen as capture if needed.
703  if (re->cap_ > 0) {
704  re->op_ = kRegexpCapture;
705  // re->cap_ is already set
706  re->AllocSub(1);
707  re->sub()[0] = FinishRegexp(r1);
708  re->simple_ = re->ComputeSimple();
709  } else {
710  re->Decref();
711  re = r1;
712  }
713  return PushRegexp(re);
714 }
715 
716 // Processes the end of input, returning the final regexp.
718  DoAlternation();
719  Regexp* re = stacktop_;
720  if (re != NULL && re->down_ != NULL) {
721  status_->set_code(kRegexpMissingParen);
722  status_->set_error_arg(whole_regexp_);
723  return NULL;
724  }
725  stacktop_ = NULL;
726  return FinishRegexp(re);
727 }
728 
729 // Returns the leading regexp that re starts with.
730 // The returned Regexp* points into a piece of re,
731 // so it must not be used after the caller calls re->Decref().
733  if (re->op() == kRegexpEmptyMatch)
734  return NULL;
735  if (re->op() == kRegexpConcat && re->nsub() >= 2) {
736  Regexp** sub = re->sub();
737  if (sub[0]->op() == kRegexpEmptyMatch)
738  return NULL;
739  return sub[0];
740  }
741  return re;
742 }
743 
744 // Removes LeadingRegexp(re) from re and returns what's left.
745 // Consumes the reference to re and may edit it in place.
746 // If caller wants to hold on to LeadingRegexp(re),
747 // must have already Incref'ed it.
749  if (re->op() == kRegexpEmptyMatch)
750  return re;
751  if (re->op() == kRegexpConcat && re->nsub() >= 2) {
752  Regexp** sub = re->sub();
753  if (sub[0]->op() == kRegexpEmptyMatch)
754  return re;
755  sub[0]->Decref();
756  sub[0] = NULL;
757  if (re->nsub() == 2) {
758  // Collapse concatenation to single regexp.
759  Regexp* nre = sub[1];
760  sub[1] = NULL;
761  re->Decref();
762  return nre;
763  }
764  // 3 or more -> 2 or more.
765  re->nsub_--;
766  memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
767  return re;
768  }
769  Regexp::ParseFlags pf = re->parse_flags();
770  re->Decref();
771  return new Regexp(kRegexpEmptyMatch, pf);
772 }
773 
774 // Returns the leading string that re starts with.
775 // The returned Rune* points into a piece of re,
776 // so it must not be used after the caller calls re->Decref().
777 Rune* Regexp::LeadingString(Regexp* re, int *nrune,
779  while (re->op() == kRegexpConcat && re->nsub() > 0)
780  re = re->sub()[0];
781 
782  *flags = static_cast<Regexp::ParseFlags>(re->parse_flags_ & Regexp::FoldCase);
783 
784  if (re->op() == kRegexpLiteral) {
785  *nrune = 1;
786  return &re->rune_;
787  }
788 
789  if (re->op() == kRegexpLiteralString) {
790  *nrune = re->nrunes_;
791  return re->runes_;
792  }
793 
794  *nrune = 0;
795  return NULL;
796 }
797 
798 // Removes the first n leading runes from the beginning of re.
799 // Edits re in place.
800 void Regexp::RemoveLeadingString(Regexp* re, int n) {
801  // Chase down concats to find first string.
802  // For regexps generated by parser, nested concats are
803  // flattened except when doing so would overflow the 16-bit
804  // limit on the size of a concatenation, so we should never
805  // see more than two here.
806  Regexp* stk[4];
807  size_t d = 0;
808  while (re->op() == kRegexpConcat) {
809  if (d < arraysize(stk))
810  stk[d++] = re;
811  re = re->sub()[0];
812  }
813 
814  // Remove leading string from re.
815  if (re->op() == kRegexpLiteral) {
816  re->rune_ = 0;
817  re->op_ = kRegexpEmptyMatch;
818  } else if (re->op() == kRegexpLiteralString) {
819  if (n >= re->nrunes_) {
820  delete[] re->runes_;
821  re->runes_ = NULL;
822  re->nrunes_ = 0;
823  re->op_ = kRegexpEmptyMatch;
824  } else if (n == re->nrunes_ - 1) {
825  Rune rune = re->runes_[re->nrunes_ - 1];
826  delete[] re->runes_;
827  re->runes_ = NULL;
828  re->nrunes_ = 0;
829  re->rune_ = rune;
830  re->op_ = kRegexpLiteral;
831  } else {
832  re->nrunes_ -= n;
833  memmove(re->runes_, re->runes_ + n, re->nrunes_ * sizeof re->runes_[0]);
834  }
835  }
836 
837  // If re is now empty, concatenations might simplify too.
838  while (d > 0) {
839  re = stk[--d];
840  Regexp** sub = re->sub();
841  if (sub[0]->op() == kRegexpEmptyMatch) {
842  sub[0]->Decref();
843  sub[0] = NULL;
844  // Delete first element of concat.
845  switch (re->nsub()) {
846  case 0:
847  case 1:
848  // Impossible.
849  LOG(DFATAL) << "Concat of " << re->nsub();
850  re->submany_ = NULL;
851  re->op_ = kRegexpEmptyMatch;
852  break;
853 
854  case 2: {
855  // Replace re with sub[1].
856  Regexp* old = sub[1];
857  sub[1] = NULL;
858  re->Swap(old);
859  old->Decref();
860  break;
861  }
862 
863  default:
864  // Slide down.
865  re->nsub_--;
866  memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
867  break;
868  }
869  }
870  }
871 }
872 
873 // In the context of factoring alternations, a Splice is: a factored prefix or
874 // merged character class computed by one iteration of one round of factoring;
875 // the span of subexpressions of the alternation to be "spliced" (i.e. removed
876 // and replaced); and, for a factored prefix, the number of suffixes after any
877 // factoring that might have subsequently been performed on them. For a merged
878 // character class, there are no suffixes, of course, so the field is ignored.
879 struct Splice {
881  : prefix(prefix),
882  sub(sub),
883  nsub(nsub),
884  nsuffix(-1) {}
885 
886  Regexp* prefix;
887  Regexp** sub;
888  int nsub;
889  int nsuffix;
890 };
891 
892 // Named so because it is used to implement an explicit stack, a Frame is: the
893 // span of subexpressions of the alternation to be factored; the current round
894 // of factoring; any Splices computed; and, for a factored prefix, an iterator
895 // to the next Splice to be factored (i.e. in another Frame) because suffixes.
896 struct Frame {
898  : sub(sub),
899  nsub(nsub),
900  round(0) {}
901 
902  Regexp** sub;
903  int nsub;
904  int round;
905  std::vector<Splice> splices;
906  int spliceidx;
907 };
908 
909 // Bundled into a class for friend access to Regexp without needing to declare
910 // (or define) Splice in regexp.h.
911 class FactorAlternationImpl {
912  public:
913  static void Round1(Regexp** sub, int nsub,
915  std::vector<Splice>* splices);
916  static void Round2(Regexp** sub, int nsub,
918  std::vector<Splice>* splices);
919  static void Round3(Regexp** sub, int nsub,
921  std::vector<Splice>* splices);
922 };
923 
924 // Factors common prefixes from alternation.
925 // For example,
926 // ABC|ABD|AEF|BCX|BCY
927 // simplifies to
928 // A(B(C|D)|EF)|BC(X|Y)
929 // and thence to
930 // A(B[CD]|EF)|BC[XY]
931 //
932 // Rewrites sub to contain simplified list to alternate and returns
933 // the new length of sub. Adjusts reference counts accordingly
934 // (incoming sub[i] decremented, outgoing sub[i] incremented).
936  std::vector<Frame> stk;
937  stk.emplace_back(sub, nsub);
938 
939  for (;;) {
940  auto& sub = stk.back().sub;
941  auto& nsub = stk.back().nsub;
942  auto& round = stk.back().round;
943  auto& splices = stk.back().splices;
944  auto& spliceidx = stk.back().spliceidx;
945 
946  if (splices.empty()) {
947  // Advance to the next round of factoring. Note that this covers
948  // the initialised state: when splices is empty and round is 0.
949  round++;
950  } else if (spliceidx < static_cast<int>(splices.size())) {
951  // We have at least one more Splice to factor. Recurse logically.
952  stk.emplace_back(splices[spliceidx].sub, splices[spliceidx].nsub);
953  continue;
954  } else {
955  // We have no more Splices to factor. Apply them.
956  auto iter = splices.begin();
957  int out = 0;
958  for (int i = 0; i < nsub; ) {
959  // Copy until we reach where the next Splice begins.
960  while (sub + i < iter->sub)
961  sub[out++] = sub[i++];
962  switch (round) {
963  case 1:
964  case 2: {
965  // Assemble the Splice prefix and the suffixes.
966  Regexp* re[2];
967  re[0] = iter->prefix;
968  re[1] = Regexp::AlternateNoFactor(iter->sub, iter->nsuffix, flags);
969  sub[out++] = Regexp::Concat(re, 2, flags);
970  i += iter->nsub;
971  break;
972  }
973  case 3:
974  // Just use the Splice prefix.
975  sub[out++] = iter->prefix;
976  i += iter->nsub;
977  break;
978  default:
979  LOG(DFATAL) << "unknown round: " << round;
980  break;
981  }
982  // If we are done, copy until the end of sub.
983  if (++iter == splices.end()) {
984  while (i < nsub)
985  sub[out++] = sub[i++];
986  }
987  }
988  splices.clear();
989  nsub = out;
990  // Advance to the next round of factoring.
991  round++;
992  }
993 
994  switch (round) {
995  case 1:
997  break;
998  case 2:
1000  break;
1001  case 3:
1003  break;
1004  case 4:
1005  if (stk.size() == 1) {
1006  // We are at the top of the stack. Just return.
1007  return nsub;
1008  } else {
1009  // Pop the stack and set the number of suffixes.
1010  // (Note that references will be invalidated!)
1011  int nsuffix = nsub;
1012  stk.pop_back();
1013  stk.back().splices[stk.back().spliceidx].nsuffix = nsuffix;
1014  ++stk.back().spliceidx;
1015  continue;
1016  }
1017  default:
1018  LOG(DFATAL) << "unknown round: " << round;
1019  break;
1020  }
1021 
1022  // Set spliceidx depending on whether we have Splices to factor.
1023  if (splices.empty() || round == 3) {
1024  spliceidx = static_cast<int>(splices.size());
1025  } else {
1026  spliceidx = 0;
1027  }
1028  }
1029 }
1030 
1033  std::vector<Splice>* splices) {
1034  // Round 1: Factor out common literal prefixes.
1035  int start = 0;
1036  Rune* rune = NULL;
1037  int nrune = 0;
1039  for (int i = 0; i <= nsub; i++) {
1040  // Invariant: sub[start:i] consists of regexps that all
1041  // begin with rune[0:nrune].
1042  Rune* rune_i = NULL;
1043  int nrune_i = 0;
1045  if (i < nsub) {
1046  rune_i = Regexp::LeadingString(sub[i], &nrune_i, &runeflags_i);
1047  if (runeflags_i == runeflags) {
1048  int same = 0;
1049  while (same < nrune && same < nrune_i && rune[same] == rune_i[same])
1050  same++;
1051  if (same > 0) {
1052  // Matches at least one rune in current range. Keep going around.
1053  nrune = same;
1054  continue;
1055  }
1056  }
1057  }
1058 
1059  // Found end of a run with common leading literal string:
1060  // sub[start:i] all begin with rune[0:nrune],
1061  // but sub[i] does not even begin with rune[0].
1062  if (i == start) {
1063  // Nothing to do - first iteration.
1064  } else if (i == start+1) {
1065  // Just one: don't bother factoring.
1066  } else {
1067  Regexp* prefix = Regexp::LiteralString(rune, nrune, runeflags);
1068  for (int j = start; j < i; j++)
1069  Regexp::RemoveLeadingString(sub[j], nrune);
1070  splices->emplace_back(prefix, sub + start, i - start);
1071  }
1072 
1073  // Prepare for next iteration (if there is one).
1074  if (i < nsub) {
1075  start = i;
1076  rune = rune_i;
1077  nrune = nrune_i;
1078  runeflags = runeflags_i;
1079  }
1080  }
1081 }
1082 
1085  std::vector<Splice>* splices) {
1086  // Round 2: Factor out common simple prefixes,
1087  // just the first piece of each concatenation.
1088  // This will be good enough a lot of the time.
1089  //
1090  // Complex subexpressions (e.g. involving quantifiers)
1091  // are not safe to factor because that collapses their
1092  // distinct paths through the automaton, which affects
1093  // correctness in some cases.
1094  int start = 0;
1095  Regexp* first = NULL;
1096  for (int i = 0; i <= nsub; i++) {
1097  // Invariant: sub[start:i] consists of regexps that all
1098  // begin with first.
1099  Regexp* first_i = NULL;
1100  if (i < nsub) {
1101  first_i = Regexp::LeadingRegexp(sub[i]);
1102  if (first != NULL &&
1103  // first must be an empty-width op
1104  // OR a char class, any char or any byte
1105  // OR a fixed repeat of a literal, char class, any char or any byte.
1106  (first->op() == kRegexpBeginLine ||
1107  first->op() == kRegexpEndLine ||
1108  first->op() == kRegexpWordBoundary ||
1109  first->op() == kRegexpNoWordBoundary ||
1110  first->op() == kRegexpBeginText ||
1111  first->op() == kRegexpEndText ||
1112  first->op() == kRegexpCharClass ||
1113  first->op() == kRegexpAnyChar ||
1114  first->op() == kRegexpAnyByte ||
1115  (first->op() == kRegexpRepeat &&
1116  first->min() == first->max() &&
1117  (first->sub()[0]->op() == kRegexpLiteral ||
1118  first->sub()[0]->op() == kRegexpCharClass ||
1119  first->sub()[0]->op() == kRegexpAnyChar ||
1120  first->sub()[0]->op() == kRegexpAnyByte))) &&
1121  Regexp::Equal(first, first_i))
1122  continue;
1123  }
1124 
1125  // Found end of a run with common leading regexp:
1126  // sub[start:i] all begin with first,
1127  // but sub[i] does not.
1128  if (i == start) {
1129  // Nothing to do - first iteration.
1130  } else if (i == start+1) {
1131  // Just one: don't bother factoring.
1132  } else {
1133  Regexp* prefix = first->Incref();
1134  for (int j = start; j < i; j++)
1136  splices->emplace_back(prefix, sub + start, i - start);
1137  }
1138 
1139  // Prepare for next iteration (if there is one).
1140  if (i < nsub) {
1141  start = i;
1142  first = first_i;
1143  }
1144  }
1145 }
1146 
1149  std::vector<Splice>* splices) {
1150  // Round 3: Merge runs of literals and/or character classes.
1151  int start = 0;
1152  Regexp* first = NULL;
1153  for (int i = 0; i <= nsub; i++) {
1154  // Invariant: sub[start:i] consists of regexps that all
1155  // are either literals (i.e. runes) or character classes.
1156  Regexp* first_i = NULL;
1157  if (i < nsub) {
1158  first_i = sub[i];
1159  if (first != NULL &&
1160  (first->op() == kRegexpLiteral ||
1161  first->op() == kRegexpCharClass) &&
1162  (first_i->op() == kRegexpLiteral ||
1163  first_i->op() == kRegexpCharClass))
1164  continue;
1165  }
1166 
1167  // Found end of a run of Literal/CharClass:
1168  // sub[start:i] all are either one or the other,
1169  // but sub[i] is not.
1170  if (i == start) {
1171  // Nothing to do - first iteration.
1172  } else if (i == start+1) {
1173  // Just one: don't bother factoring.
1174  } else {
1175  CharClassBuilder ccb;
1176  for (int j = start; j < i; j++) {
1177  Regexp* re = sub[j];
1178  if (re->op() == kRegexpCharClass) {
1179  CharClass* cc = re->cc();
1180  for (CharClass::iterator it = cc->begin(); it != cc->end(); ++it)
1181  ccb.AddRange(it->lo, it->hi);
1182  } else if (re->op() == kRegexpLiteral) {
1183  ccb.AddRangeFlags(re->rune(), re->rune(), re->parse_flags());
1184  } else {
1185  LOG(DFATAL) << "RE2: unexpected op: " << re->op() << " "
1186  << re->ToString();
1187  }
1188  re->Decref();
1189  }
1190  Regexp* re = Regexp::NewCharClass(ccb.GetCharClass(), flags);
1191  splices->emplace_back(re, sub + start, i - start);
1192  }
1193 
1194  // Prepare for next iteration (if there is one).
1195  if (i < nsub) {
1196  start = i;
1197  first = first_i;
1198  }
1199  }
1200 }
1201 
1202 // Collapse the regexps on top of the stack, down to the
1203 // first marker, into a new op node (op == kRegexpAlternate
1204 // or op == kRegexpConcat).
1206  // Scan backward to marker, counting children of composite.
1207  int n = 0;
1208  Regexp* next = NULL;
1209  Regexp* sub;
1210  for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
1211  next = sub->down_;
1212  if (sub->op_ == op)
1213  n += sub->nsub_;
1214  else
1215  n++;
1216  }
1217 
1218  // If there's just one child, leave it alone.
1219  // (Concat of one thing is that one thing; alternate of one thing is same.)
1220  if (stacktop_ != NULL && stacktop_->down_ == next)
1221  return;
1222 
1223  // Construct op (alternation or concatenation), flattening op of op.
1224  PODArray<Regexp*> subs(n);
1225  next = NULL;
1226  int i = n;
1227  for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
1228  next = sub->down_;
1229  if (sub->op_ == op) {
1230  Regexp** sub_subs = sub->sub();
1231  for (int k = sub->nsub_ - 1; k >= 0; k--)
1232  subs[--i] = sub_subs[k]->Incref();
1233  sub->Decref();
1234  } else {
1235  subs[--i] = FinishRegexp(sub);
1236  }
1237  }
1238 
1239  Regexp* re = ConcatOrAlternate(op, subs.data(), n, flags_, true);
1240  re->simple_ = re->ComputeSimple();
1241  re->down_ = next;
1242  stacktop_ = re;
1243 }
1244 
1245 // Finishes the current concatenation,
1246 // collapsing it into a single regexp on the stack.
1248  Regexp* r1 = stacktop_;
1249  if (r1 == NULL || IsMarker(r1->op())) {
1250  // empty concatenation is special case
1251  Regexp* re = new Regexp(kRegexpEmptyMatch, flags_);
1252  PushRegexp(re);
1253  }
1254  DoCollapse(kRegexpConcat);
1255 }
1256 
1257 // Finishes the current alternation,
1258 // collapsing it to a single regexp on the stack.
1260  DoVerticalBar();
1261  // Now stack top is kVerticalBar.
1262  Regexp* r1 = stacktop_;
1263  stacktop_ = r1->down_;
1264  r1->Decref();
1265  DoCollapse(kRegexpAlternate);
1266 }
1267 
1268 // Incremental conversion of concatenated literals into strings.
1269 // If top two elements on stack are both literal or string,
1270 // collapse into single string.
1271 // Don't walk down the stack -- the parser calls this frequently
1272 // enough that below the bottom two is known to be collapsed.
1273 // Only called when another regexp is about to be pushed
1274 // on the stack, so that the topmost literal is not being considered.
1275 // (Otherwise ab* would turn into (ab)*.)
1276 // If r >= 0, consider pushing a literal r on the stack.
1277 // Return whether that happened.
1279  Regexp* re1;
1280  Regexp* re2;
1281  if ((re1 = stacktop_) == NULL || (re2 = re1->down_) == NULL)
1282  return false;
1283 
1284  if (re1->op_ != kRegexpLiteral && re1->op_ != kRegexpLiteralString)
1285  return false;
1286  if (re2->op_ != kRegexpLiteral && re2->op_ != kRegexpLiteralString)
1287  return false;
1288  if ((re1->parse_flags_ & FoldCase) != (re2->parse_flags_ & FoldCase))
1289  return false;
1290 
1291  if (re2->op_ == kRegexpLiteral) {
1292  // convert into string
1293  Rune rune = re2->rune_;
1294  re2->op_ = kRegexpLiteralString;
1295  re2->nrunes_ = 0;
1296  re2->runes_ = NULL;
1297  re2->AddRuneToString(rune);
1298  }
1299 
1300  // push re1 into re2.
1301  if (re1->op_ == kRegexpLiteral) {
1302  re2->AddRuneToString(re1->rune_);
1303  } else {
1304  for (int i = 0; i < re1->nrunes_; i++)
1305  re2->AddRuneToString(re1->runes_[i]);
1306  re1->nrunes_ = 0;
1307  delete[] re1->runes_;
1308  re1->runes_ = NULL;
1309  }
1310 
1311  // reuse re1 if possible
1312  if (r >= 0) {
1313  re1->op_ = kRegexpLiteral;
1314  re1->rune_ = r;
1315  re1->parse_flags_ = static_cast<uint16_t>(flags);
1316  return true;
1317  }
1318 
1319  stacktop_ = re2;
1320  re1->Decref();
1321  return false;
1322 }
1323 
1324 // Lexing routines.
1325 
1326 // Parses a decimal integer, storing it in *np.
1327 // Sets *s to span the remainder of the string.
1328 static bool ParseInteger(StringPiece* s, int* np) {
1329  if (s->empty() || !isdigit((*s)[0] & 0xFF))
1330  return false;
1331  // Disallow leading zeros.
1332  if (s->size() >= 2 && (*s)[0] == '0' && isdigit((*s)[1] & 0xFF))
1333  return false;
1334  int n = 0;
1335  int c;
1336  while (!s->empty() && isdigit(c = (*s)[0] & 0xFF)) {
1337  // Avoid overflow.
1338  if (n >= 100000000)
1339  return false;
1340  n = n*10 + c - '0';
1341  s->remove_prefix(1); // digit
1342  }
1343  *np = n;
1344  return true;
1345 }
1346 
1347 // Parses a repetition suffix like {1,2} or {2} or {2,}.
1348 // Sets *s to span the remainder of the string on success.
1349 // Sets *lo and *hi to the given range.
1350 // In the case of {2,}, the high number is unbounded;
1351 // sets *hi to -1 to signify this.
1352 // {,2} is NOT a valid suffix.
1353 // The Maybe in the name signifies that the regexp parse
1354 // doesn't fail even if ParseRepetition does, so the StringPiece
1355 // s must NOT be edited unless MaybeParseRepetition returns true.
1356 static bool MaybeParseRepetition(StringPiece* sp, int* lo, int* hi) {
1357  StringPiece s = *sp;
1358  if (s.empty() || s[0] != '{')
1359  return false;
1360  s.remove_prefix(1); // '{'
1361  if (!ParseInteger(&s, lo))
1362  return false;
1363  if (s.empty())
1364  return false;
1365  if (s[0] == ',') {
1366  s.remove_prefix(1); // ','
1367  if (s.empty())
1368  return false;
1369  if (s[0] == '}') {
1370  // {2,} means at least 2
1371  *hi = -1;
1372  } else {
1373  // {2,4} means 2, 3, or 4.
1374  if (!ParseInteger(&s, hi))
1375  return false;
1376  }
1377  } else {
1378  // {2} means exactly two
1379  *hi = *lo;
1380  }
1381  if (s.empty() || s[0] != '}')
1382  return false;
1383  s.remove_prefix(1); // '}'
1384  *sp = s;
1385  return true;
1386 }
1387 
1388 // Removes the next Rune from the StringPiece and stores it in *r.
1389 // Returns number of bytes removed from sp.
1390 // Behaves as though there is a terminating NUL at the end of sp.
1391 // Argument order is backwards from usual Google style
1392 // but consistent with chartorune.
1394  // fullrune() takes int, not size_t. However, it just looks
1395  // at the leading byte and treats any length >= 4 the same.
1396  if (fullrune(sp->data(), static_cast<int>(std::min(size_t{4}, sp->size())))) {
1397  int n = chartorune(r, sp->data());
1398  // Some copies of chartorune have a bug that accepts
1399  // encodings of values in (10FFFF, 1FFFFF] as valid.
1400  // Those values break the character class algorithm,
1401  // which assumes Runemax is the largest rune.
1402  if (*r > Runemax) {
1403  n = 1;
1404  *r = Runeerror;
1405  }
1406  if (!(n == 1 && *r == Runeerror)) { // no decoding error
1407  sp->remove_prefix(n);
1408  return n;
1409  }
1410  }
1411 
1412  if (status != NULL) {
1413  status->set_code(kRegexpBadUTF8);
1414  status->set_error_arg(StringPiece());
1415  }
1416  return -1;
1417 }
1418 
1419 // Returns whether name is valid UTF-8.
1420 // If not, sets status to kRegexpBadUTF8.
1421 static bool IsValidUTF8(const StringPiece& s, RegexpStatus* status) {
1422  StringPiece t = s;
1423  Rune r;
1424  while (!t.empty()) {
1425  if (StringPieceToRune(&r, &t, status) < 0)
1426  return false;
1427  }
1428  return true;
1429 }
1430 
1431 // Is c a hex digit?
1432 static int IsHex(int c) {
1433  return ('0' <= c && c <= '9') ||
1434  ('A' <= c && c <= 'F') ||
1435  ('a' <= c && c <= 'f');
1436 }
1437 
1438 // Convert hex digit to value.
1439 static int UnHex(int c) {
1440  if ('0' <= c && c <= '9')
1441  return c - '0';
1442  if ('A' <= c && c <= 'F')
1443  return c - 'A' + 10;
1444  if ('a' <= c && c <= 'f')
1445  return c - 'a' + 10;
1446  LOG(DFATAL) << "Bad hex digit " << c;
1447  return 0;
1448 }
1449 
1450 // Parse an escape sequence (e.g., \n, \{).
1451 // Sets *s to span the remainder of the string.
1452 // Sets *rp to the named character.
1453 static bool ParseEscape(StringPiece* s, Rune* rp,
1454  RegexpStatus* status, int rune_max) {
1455  const char* begin = s->data();
1456  if (s->empty() || (*s)[0] != '\\') {
1457  // Should not happen - caller always checks.
1458  status->set_code(kRegexpInternalError);
1459  status->set_error_arg(StringPiece());
1460  return false;
1461  }
1462  if (s->size() == 1) {
1463  status->set_code(kRegexpTrailingBackslash);
1464  status->set_error_arg(StringPiece());
1465  return false;
1466  }
1467  Rune c, c1;
1468  s->remove_prefix(1); // backslash
1469  if (StringPieceToRune(&c, s, status) < 0)
1470  return false;
1471  int code;
1472  switch (c) {
1473  default:
1474  if (c < Runeself && !isalpha(c) && !isdigit(c)) {
1475  // Escaped non-word characters are always themselves.
1476  // PCRE is not quite so rigorous: it accepts things like
1477  // \q, but we don't. We once rejected \_, but too many
1478  // programs and people insist on using it, so allow \_.
1479  *rp = c;
1480  return true;
1481  }
1482  goto BadEscape;
1483 
1484  // Octal escapes.
1485  case '1':
1486  case '2':
1487  case '3':
1488  case '4':
1489  case '5':
1490  case '6':
1491  case '7':
1492  // Single non-zero octal digit is a backreference; not supported.
1493  if (s->empty() || (*s)[0] < '0' || (*s)[0] > '7')
1494  goto BadEscape;
1496  case '0':
1497  // consume up to three octal digits; already have one.
1498  code = c - '0';
1499  if (!s->empty() && '0' <= (c = (*s)[0]) && c <= '7') {
1500  code = code * 8 + c - '0';
1501  s->remove_prefix(1); // digit
1502  if (!s->empty()) {
1503  c = (*s)[0];
1504  if ('0' <= c && c <= '7') {
1505  code = code * 8 + c - '0';
1506  s->remove_prefix(1); // digit
1507  }
1508  }
1509  }
1510  if (code > rune_max)
1511  goto BadEscape;
1512  *rp = code;
1513  return true;
1514 
1515  // Hexadecimal escapes
1516  case 'x':
1517  if (s->empty())
1518  goto BadEscape;
1519  if (StringPieceToRune(&c, s, status) < 0)
1520  return false;
1521  if (c == '{') {
1522  // Any number of digits in braces.
1523  // Update n as we consume the string, so that
1524  // the whole thing gets shown in the error message.
1525  // Perl accepts any text at all; it ignores all text
1526  // after the first non-hex digit. We require only hex digits,
1527  // and at least one.
1528  if (StringPieceToRune(&c, s, status) < 0)
1529  return false;
1530  int nhex = 0;
1531  code = 0;
1532  while (IsHex(c)) {
1533  nhex++;
1534  code = code * 16 + UnHex(c);
1535  if (code > rune_max)
1536  goto BadEscape;
1537  if (s->empty())
1538  goto BadEscape;
1539  if (StringPieceToRune(&c, s, status) < 0)
1540  return false;
1541  }
1542  if (c != '}' || nhex == 0)
1543  goto BadEscape;
1544  *rp = code;
1545  return true;
1546  }
1547  // Easy case: two hex digits.
1548  if (s->empty())
1549  goto BadEscape;
1550  if (StringPieceToRune(&c1, s, status) < 0)
1551  return false;
1552  if (!IsHex(c) || !IsHex(c1))
1553  goto BadEscape;
1554  *rp = UnHex(c) * 16 + UnHex(c1);
1555  return true;
1556 
1557  // C escapes.
1558  case 'n':
1559  *rp = '\n';
1560  return true;
1561  case 'r':
1562  *rp = '\r';
1563  return true;
1564  case 't':
1565  *rp = '\t';
1566  return true;
1567 
1568  // Less common C escapes.
1569  case 'a':
1570  *rp = '\a';
1571  return true;
1572  case 'f':
1573  *rp = '\f';
1574  return true;
1575  case 'v':
1576  *rp = '\v';
1577  return true;
1578 
1579  // This code is disabled to avoid misparsing
1580  // the Perl word-boundary \b as a backspace
1581  // when in POSIX regexp mode. Surprisingly,
1582  // in Perl, \b means word-boundary but [\b]
1583  // means backspace. We don't support that:
1584  // if you want a backspace embed a literal
1585  // backspace character or use \x08.
1586  //
1587  // case 'b':
1588  // *rp = '\b';
1589  // return true;
1590  }
1591 
1592  LOG(DFATAL) << "Not reached in ParseEscape.";
1593 
1594 BadEscape:
1595  // Unrecognized escape sequence.
1596  status->set_code(kRegexpBadEscape);
1597  status->set_error_arg(
1598  StringPiece(begin, static_cast<size_t>(s->data() - begin)));
1599  return false;
1600 }
1601 
1602 // Add a range to the character class, but exclude newline if asked.
1603 // Also handle case folding.
1606 
1607  // Take out \n if the flags say so.
1608  bool cutnl = !(parse_flags & Regexp::ClassNL) ||
1610  if (cutnl && lo <= '\n' && '\n' <= hi) {
1611  if (lo < '\n')
1612  AddRangeFlags(lo, '\n' - 1, parse_flags);
1613  if (hi > '\n')
1614  AddRangeFlags('\n' + 1, hi, parse_flags);
1615  return;
1616  }
1617 
1618  // If folding case, add fold-equivalent characters too.
1620  AddFoldedRange(this, lo, hi, 0);
1621  else
1622  AddRange(lo, hi);
1623 }
1624 
1625 // Look for a group with the given name.
1626 static const UGroup* LookupGroup(const StringPiece& name,
1627  const UGroup *groups, int ngroups) {
1628  // Simple name lookup.
1629  for (int i = 0; i < ngroups; i++)
1630  if (StringPiece(groups[i].name) == name)
1631  return &groups[i];
1632  return NULL;
1633 }
1634 
1635 // Look for a POSIX group with the given name (e.g., "[:^alpha:]")
1636 static const UGroup* LookupPosixGroup(const StringPiece& name) {
1638 }
1639 
1640 static const UGroup* LookupPerlGroup(const StringPiece& name) {
1642 }
1643 
1644 #if !defined(RE2_USE_ICU)
1645 // Fake UGroup containing all Runes
1646 static URange16 any16[] = { { 0, 65535 } };
1647 static URange32 any32[] = { { 65536, Runemax } };
1648 static UGroup anygroup = { "Any", +1, any16, 1, any32, 1 };
1649 
1650 // Look for a Unicode group with the given name (e.g., "Han")
1652  // Special case: "Any" means any.
1653  if (name == StringPiece("Any"))
1654  return &anygroup;
1656 }
1657 #endif
1658 
1659 // Add a UGroup or its negation to the character class.
1660 static void AddUGroup(CharClassBuilder *cc, const UGroup *g, int sign,
1662  if (sign == +1) {
1663  for (int i = 0; i < g->nr16; i++) {
1664  cc->AddRangeFlags(g->r16[i].lo, g->r16[i].hi, parse_flags);
1665  }
1666  for (int i = 0; i < g->nr32; i++) {
1667  cc->AddRangeFlags(g->r32[i].lo, g->r32[i].hi, parse_flags);
1668  }
1669  } else {
1670  if (parse_flags & Regexp::FoldCase) {
1671  // Normally adding a case-folded group means
1672  // adding all the extra fold-equivalent runes too.
1673  // But if we're adding the negation of the group,
1674  // we have to exclude all the runes that are fold-equivalent
1675  // to what's already missing. Too hard, so do in two steps.
1676  CharClassBuilder ccb1;
1677  AddUGroup(&ccb1, g, +1, parse_flags);
1678  // If the flags say to take out \n, put it in, so that negating will take it out.
1679  // Normally AddRangeFlags does this, but we're bypassing AddRangeFlags.
1680  bool cutnl = !(parse_flags & Regexp::ClassNL) ||
1682  if (cutnl) {
1683  ccb1.AddRange('\n', '\n');
1684  }
1685  ccb1.Negate();
1686  cc->AddCharClass(&ccb1);
1687  return;
1688  }
1689  int next = 0;
1690  for (int i = 0; i < g->nr16; i++) {
1691  if (next < g->r16[i].lo)
1692  cc->AddRangeFlags(next, g->r16[i].lo - 1, parse_flags);
1693  next = g->r16[i].hi + 1;
1694  }
1695  for (int i = 0; i < g->nr32; i++) {
1696  if (next < g->r32[i].lo)
1697  cc->AddRangeFlags(next, g->r32[i].lo - 1, parse_flags);
1698  next = g->r32[i].hi + 1;
1699  }
1700  if (next <= Runemax)
1701  cc->AddRangeFlags(next, Runemax, parse_flags);
1702  }
1703 }
1704 
1705 // Maybe parse a Perl character class escape sequence.
1706 // Only recognizes the Perl character classes (\d \s \w \D \S \W),
1707 // not the Perl empty-string classes (\b \B \A \Z \z).
1708 // On success, sets *s to span the remainder of the string
1709 // and returns the corresponding UGroup.
1710 // The StringPiece must *NOT* be edited unless the call succeeds.
1711 const UGroup* MaybeParsePerlCCEscape(StringPiece* s, Regexp::ParseFlags parse_flags) {
1713  return NULL;
1714  if (s->size() < 2 || (*s)[0] != '\\')
1715  return NULL;
1716  // Could use StringPieceToRune, but there aren't
1717  // any non-ASCII Perl group names.
1718  StringPiece name(s->data(), 2);
1719  const UGroup *g = LookupPerlGroup(name);
1720  if (g == NULL)
1721  return NULL;
1722  s->remove_prefix(name.size());
1723  return g;
1724 }
1725 
1727  kParseOk, // Did some parsing.
1728  kParseError, // Found an error.
1729  kParseNothing, // Decided not to parse.
1730 };
1731 
1732 // Maybe parses a Unicode character group like \p{Han} or \P{Han}
1733 // (the latter is a negated group).
1735  CharClassBuilder *cc,
1736  RegexpStatus* status) {
1737  // Decide whether to parse.
1739  return kParseNothing;
1740  if (s->size() < 2 || (*s)[0] != '\\')
1741  return kParseNothing;
1742  Rune c = (*s)[1];
1743  if (c != 'p' && c != 'P')
1744  return kParseNothing;
1745 
1746  // Committed to parse. Results:
1747  int sign = +1; // -1 = negated char class
1748  if (c == 'P')
1749  sign = -sign;
1750  StringPiece seq = *s; // \p{Han} or \pL
1751  StringPiece name; // Han or L
1752  s->remove_prefix(2); // '\\', 'p'
1753 
1754  if (!StringPieceToRune(&c, s, status))
1755  return kParseError;
1756  if (c != '{') {
1757  // Name is the bit of string we just skipped over for c.
1758  const char* p = seq.data() + 2;
1759  name = StringPiece(p, static_cast<size_t>(s->data() - p));
1760  } else {
1761  // Name is in braces. Look for closing }
1762  size_t end = s->find('}', 0);
1763  if (end == StringPiece::npos) {
1764  if (!IsValidUTF8(seq, status))
1765  return kParseError;
1766  status->set_code(kRegexpBadCharRange);
1767  status->set_error_arg(seq);
1768  return kParseError;
1769  }
1770  name = StringPiece(s->data(), end); // without '}'
1771  s->remove_prefix(end + 1); // with '}'
1772  if (!IsValidUTF8(name, status))
1773  return kParseError;
1774  }
1775 
1776  // Chop seq where s now begins.
1777  seq = StringPiece(seq.data(), static_cast<size_t>(s->data() - seq.data()));
1778 
1779  if (!name.empty() && name[0] == '^') {
1780  sign = -sign;
1781  name.remove_prefix(1); // '^'
1782  }
1783 
1784 #if !defined(RE2_USE_ICU)
1785  // Look up the group in the RE2 Unicode data.
1786  const UGroup *g = LookupUnicodeGroup(name);
1787  if (g == NULL) {
1788  status->set_code(kRegexpBadCharRange);
1789  status->set_error_arg(seq);
1790  return kParseError;
1791  }
1792 
1793  AddUGroup(cc, g, sign, parse_flags);
1794 #else
1795  // Look up the group in the ICU Unicode data. Because ICU provides full
1796  // Unicode properties support, this could be more than a lookup by name.
1797  ::icu::UnicodeString ustr = ::icu::UnicodeString::fromUTF8(
1798  std::string("\\p{") + std::string(name) + std::string("}"));
1799  UErrorCode uerr = U_ZERO_ERROR;
1800  ::icu::UnicodeSet uset(ustr, uerr);
1801  if (U_FAILURE(uerr)) {
1802  status->set_code(kRegexpBadCharRange);
1803  status->set_error_arg(seq);
1804  return kParseError;
1805  }
1806 
1807  // Convert the UnicodeSet to a URange32 and UGroup that we can add.
1808  int nr = uset.getRangeCount();
1809  PODArray<URange32> r(nr);
1810  for (int i = 0; i < nr; i++) {
1811  r[i].lo = uset.getRangeStart(i);
1812  r[i].hi = uset.getRangeEnd(i);
1813  }
1814  UGroup g = {"", +1, 0, 0, r.data(), nr};
1815  AddUGroup(cc, &g, sign, parse_flags);
1816 #endif
1817 
1818  return kParseOk;
1819 }
1820 
1821 // Parses a character class name like [:alnum:].
1822 // Sets *s to span the remainder of the string.
1823 // Adds the ranges corresponding to the class to ranges.
1826  RegexpStatus* status) {
1827  // Check begins with [:
1828  const char* p = s->data();
1829  const char* ep = s->data() + s->size();
1830  if (ep - p < 2 || p[0] != '[' || p[1] != ':')
1831  return kParseNothing;
1832 
1833  // Look for closing :].
1834  const char* q;
1835  for (q = p+2; q <= ep-2 && (*q != ':' || *(q+1) != ']'); q++)
1836  ;
1837 
1838  // If no closing :], then ignore.
1839  if (q > ep-2)
1840  return kParseNothing;
1841 
1842  // Got it. Check that it's valid.
1843  q += 2;
1844  StringPiece name(p, static_cast<size_t>(q - p));
1845 
1846  const UGroup *g = LookupPosixGroup(name);
1847  if (g == NULL) {
1848  status->set_code(kRegexpBadCharRange);
1849  status->set_error_arg(name);
1850  return kParseError;
1851  }
1852 
1853  s->remove_prefix(name.size());
1854  AddUGroup(cc, g, g->sign, parse_flags);
1855  return kParseOk;
1856 }
1857 
1858 // Parses a character inside a character class.
1859 // There are fewer special characters here than in the rest of the regexp.
1860 // Sets *s to span the remainder of the string.
1861 // Sets *rp to the character.
1862 bool Regexp::ParseState::ParseCCCharacter(StringPiece* s, Rune *rp,
1863  const StringPiece& whole_class,
1864  RegexpStatus* status) {
1865  if (s->empty()) {
1866  status->set_code(kRegexpMissingBracket);
1867  status->set_error_arg(whole_class);
1868  return false;
1869  }
1870 
1871  // Allow regular escape sequences even though
1872  // many need not be escaped in this context.
1873  if ((*s)[0] == '\\')
1874  return ParseEscape(s, rp, status, rune_max_);
1875 
1876  // Otherwise take the next rune.
1877  return StringPieceToRune(rp, s, status) >= 0;
1878 }
1879 
1880 // Parses a character class character, or, if the character
1881 // is followed by a hyphen, parses a character class range.
1882 // For single characters, rr->lo == rr->hi.
1883 // Sets *s to span the remainder of the string.
1884 // Sets *rp to the character.
1885 bool Regexp::ParseState::ParseCCRange(StringPiece* s, RuneRange* rr,
1886  const StringPiece& whole_class,
1887  RegexpStatus* status) {
1888  StringPiece os = *s;
1889  if (!ParseCCCharacter(s, &rr->lo, whole_class, status))
1890  return false;
1891  // [a-] means (a|-), so check for final ].
1892  if (s->size() >= 2 && (*s)[0] == '-' && (*s)[1] != ']') {
1893  s->remove_prefix(1); // '-'
1894  if (!ParseCCCharacter(s, &rr->hi, whole_class, status))
1895  return false;
1896  if (rr->hi < rr->lo) {
1897  status->set_code(kRegexpBadCharRange);
1898  status->set_error_arg(
1899  StringPiece(os.data(), static_cast<size_t>(s->data() - os.data())));
1900  return false;
1901  }
1902  } else {
1903  rr->hi = rr->lo;
1904  }
1905  return true;
1906 }
1907 
1908 // Parses a possibly-negated character class expression like [^abx-z[:digit:]].
1909 // Sets *s to span the remainder of the string.
1910 // Sets *out_re to the regexp for the class.
1911 bool Regexp::ParseState::ParseCharClass(StringPiece* s,
1912  Regexp** out_re,
1913  RegexpStatus* status) {
1914  StringPiece whole_class = *s;
1915  if (s->empty() || (*s)[0] != '[') {
1916  // Caller checked this.
1917  status->set_code(kRegexpInternalError);
1918  status->set_error_arg(StringPiece());
1919  return false;
1920  }
1921  bool negated = false;
1922  Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
1923  re->ccb_ = new CharClassBuilder;
1924  s->remove_prefix(1); // '['
1925  if (!s->empty() && (*s)[0] == '^') {
1926  s->remove_prefix(1); // '^'
1927  negated = true;
1928  if (!(flags_ & ClassNL) || (flags_ & NeverNL)) {
1929  // If NL can't match implicitly, then pretend
1930  // negated classes include a leading \n.
1931  re->ccb_->AddRange('\n', '\n');
1932  }
1933  }
1934  bool first = true; // ] is okay as first char in class
1935  while (!s->empty() && ((*s)[0] != ']' || first)) {
1936  // - is only okay unescaped as first or last in class.
1937  // Except that Perl allows - anywhere.
1938  if ((*s)[0] == '-' && !first && !(flags_&PerlX) &&
1939  (s->size() == 1 || (*s)[1] != ']')) {
1940  StringPiece t = *s;
1941  t.remove_prefix(1); // '-'
1942  Rune r;
1943  int n = StringPieceToRune(&r, &t, status);
1944  if (n < 0) {
1945  re->Decref();
1946  return false;
1947  }
1948  status->set_code(kRegexpBadCharRange);
1949  status->set_error_arg(StringPiece(s->data(), 1+n));
1950  re->Decref();
1951  return false;
1952  }
1953  first = false;
1954 
1955  // Look for [:alnum:] etc.
1956  if (s->size() > 2 && (*s)[0] == '[' && (*s)[1] == ':') {
1957  switch (ParseCCName(s, flags_, re->ccb_, status)) {
1958  case kParseOk:
1959  continue;
1960  case kParseError:
1961  re->Decref();
1962  return false;
1963  case kParseNothing:
1964  break;
1965  }
1966  }
1967 
1968  // Look for Unicode character group like \p{Han}
1969  if (s->size() > 2 &&
1970  (*s)[0] == '\\' &&
1971  ((*s)[1] == 'p' || (*s)[1] == 'P')) {
1972  switch (ParseUnicodeGroup(s, flags_, re->ccb_, status)) {
1973  case kParseOk:
1974  continue;
1975  case kParseError:
1976  re->Decref();
1977  return false;
1978  case kParseNothing:
1979  break;
1980  }
1981  }
1982 
1983  // Look for Perl character class symbols (extension).
1984  const UGroup *g = MaybeParsePerlCCEscape(s, flags_);
1985  if (g != NULL) {
1986  AddUGroup(re->ccb_, g, g->sign, flags_);
1987  continue;
1988  }
1989 
1990  // Otherwise assume single character or simple range.
1991  RuneRange rr;
1992  if (!ParseCCRange(s, &rr, whole_class, status)) {
1993  re->Decref();
1994  return false;
1995  }
1996  // AddRangeFlags is usually called in response to a class like
1997  // \p{Foo} or [[:foo:]]; for those, it filters \n out unless
1998  // Regexp::ClassNL is set. In an explicit range or singleton
1999  // like we just parsed, we do not filter \n out, so set ClassNL
2000  // in the flags.
2001  re->ccb_->AddRangeFlags(rr.lo, rr.hi, flags_ | Regexp::ClassNL);
2002  }
2003  if (s->empty()) {
2004  status->set_code(kRegexpMissingBracket);
2005  status->set_error_arg(whole_class);
2006  re->Decref();
2007  return false;
2008  }
2009  s->remove_prefix(1); // ']'
2010 
2011  if (negated)
2012  re->ccb_->Negate();
2013 
2014  *out_re = re;
2015  return true;
2016 }
2017 
2018 // Returns whether name is a valid capture name.
2019 static bool IsValidCaptureName(const StringPiece& name) {
2020  if (name.empty())
2021  return false;
2022 
2023  // Historically, we effectively used [0-9A-Za-z_]+ to validate; that
2024  // followed Python 2 except for not restricting the first character.
2025  // As of Python 3, Unicode characters beyond ASCII are also allowed;
2026  // accordingly, we permit the Lu, Ll, Lt, Lm, Lo, Nl, Mn, Mc, Nd and
2027  // Pc categories, but again without restricting the first character.
2028  // Also, Unicode normalization (e.g. NFKC) isn't performed: Python 3
2029  // performs it for identifiers, but seemingly not for capture names;
2030  // if they start doing that for capture names, we won't follow suit.
2031  static const CharClass* const cc = []() {
2032  CharClassBuilder ccb;
2033  for (StringPiece group :
2034  {"Lu", "Ll", "Lt", "Lm", "Lo", "Nl", "Mn", "Mc", "Nd", "Pc"})
2036  +1, Regexp::NoParseFlags);
2037  return ccb.GetCharClass();
2038  }();
2039 
2040  StringPiece t = name;
2041  Rune r;
2042  while (!t.empty()) {
2043  if (StringPieceToRune(&r, &t, NULL) < 0)
2044  return false;
2045  if (cc->Contains(r))
2046  continue;
2047  return false;
2048  }
2049  return true;
2050 }
2051 
2052 // Parses a Perl flag setting or non-capturing group or both,
2053 // like (?i) or (?: or (?i:. Removes from s, updates parse state.
2054 // The caller must check that s begins with "(?".
2055 // Returns true on success. If the Perl flag is not
2056 // well-formed or not supported, sets status_ and returns false.
2057 bool Regexp::ParseState::ParsePerlFlags(StringPiece* s) {
2058  StringPiece t = *s;
2059 
2060  // Caller is supposed to check this.
2061  if (!(flags_ & PerlX) || t.size() < 2 || t[0] != '(' || t[1] != '?') {
2062  LOG(DFATAL) << "Bad call to ParseState::ParsePerlFlags";
2063  status_->set_code(kRegexpInternalError);
2064  return false;
2065  }
2066 
2067  t.remove_prefix(2); // "(?"
2068 
2069  // Check for named captures, first introduced in Python's regexp library.
2070  // As usual, there are three slightly different syntaxes:
2071  //
2072  // (?P<name>expr) the original, introduced by Python
2073  // (?<name>expr) the .NET alteration, adopted by Perl 5.10
2074  // (?'name'expr) another .NET alteration, adopted by Perl 5.10
2075  //
2076  // Perl 5.10 gave in and implemented the Python version too,
2077  // but they claim that the last two are the preferred forms.
2078  // PCRE and languages based on it (specifically, PHP and Ruby)
2079  // support all three as well. EcmaScript 4 uses only the Python form.
2080  //
2081  // In both the open source world (via Code Search) and the
2082  // Google source tree, (?P<expr>name) is the dominant form,
2083  // so that's the one we implement. One is enough.
2084  if (t.size() > 2 && t[0] == 'P' && t[1] == '<') {
2085  // Pull out name.
2086  size_t end = t.find('>', 2);
2087  if (end == StringPiece::npos) {
2088  if (!IsValidUTF8(*s, status_))
2089  return false;
2090  status_->set_code(kRegexpBadNamedCapture);
2091  status_->set_error_arg(*s);
2092  return false;
2093  }
2094 
2095  // t is "P<name>...", t[end] == '>'
2096  StringPiece capture(t.data()-2, end+3); // "(?P<name>"
2097  StringPiece name(t.data()+2, end-2); // "name"
2098  if (!IsValidUTF8(name, status_))
2099  return false;
2100  if (!IsValidCaptureName(name)) {
2101  status_->set_code(kRegexpBadNamedCapture);
2102  status_->set_error_arg(capture);
2103  return false;
2104  }
2105 
2106  if (!DoLeftParen(name)) {
2107  // DoLeftParen's failure set status_.
2108  return false;
2109  }
2110 
2111  s->remove_prefix(
2112  static_cast<size_t>(capture.data() + capture.size() - s->data()));
2113  return true;
2114  }
2115 
2116  bool negated = false;
2117  bool sawflags = false;
2118  int nflags = flags_;
2119  Rune c;
2120  for (bool done = false; !done; ) {
2121  if (t.empty())
2122  goto BadPerlOp;
2123  if (StringPieceToRune(&c, &t, status_) < 0)
2124  return false;
2125  switch (c) {
2126  default:
2127  goto BadPerlOp;
2128 
2129  // Parse flags.
2130  case 'i':
2131  sawflags = true;
2132  if (negated)
2133  nflags &= ~FoldCase;
2134  else
2135  nflags |= FoldCase;
2136  break;
2137 
2138  case 'm': // opposite of our OneLine
2139  sawflags = true;
2140  if (negated)
2141  nflags |= OneLine;
2142  else
2143  nflags &= ~OneLine;
2144  break;
2145 
2146  case 's':
2147  sawflags = true;
2148  if (negated)
2149  nflags &= ~DotNL;
2150  else
2151  nflags |= DotNL;
2152  break;
2153 
2154  case 'U':
2155  sawflags = true;
2156  if (negated)
2157  nflags &= ~NonGreedy;
2158  else
2159  nflags |= NonGreedy;
2160  break;
2161 
2162  // Negation
2163  case '-':
2164  if (negated)
2165  goto BadPerlOp;
2166  negated = true;
2167  sawflags = false;
2168  break;
2169 
2170  // Open new group.
2171  case ':':
2172  if (!DoLeftParenNoCapture()) {
2173  // DoLeftParenNoCapture's failure set status_.
2174  return false;
2175  }
2176  done = true;
2177  break;
2178 
2179  // Finish flags.
2180  case ')':
2181  done = true;
2182  break;
2183  }
2184  }
2185 
2186  if (negated && !sawflags)
2187  goto BadPerlOp;
2188 
2189  flags_ = static_cast<Regexp::ParseFlags>(nflags);
2190  *s = t;
2191  return true;
2192 
2193 BadPerlOp:
2194  status_->set_code(kRegexpBadPerlOp);
2195  status_->set_error_arg(
2196  StringPiece(s->data(), static_cast<size_t>(t.data() - s->data())));
2197  return false;
2198 }
2199 
2200 // Converts latin1 (assumed to be encoded as Latin1 bytes)
2201 // into UTF8 encoding in string.
2202 // Can't use EncodingUtils::EncodeLatin1AsUTF8 because it is
2203 // deprecated and because it rejects code points 0x80-0x9F.
2204 void ConvertLatin1ToUTF8(const StringPiece& latin1, std::string* utf) {
2205  char buf[UTFmax];
2206 
2207  utf->clear();
2208  for (size_t i = 0; i < latin1.size(); i++) {
2209  Rune r = latin1[i] & 0xFF;
2210  int n = runetochar(buf, &r);
2211  utf->append(buf, n);
2212  }
2213 }
2214 
2215 // Parses the regular expression given by s,
2216 // returning the corresponding Regexp tree.
2217 // The caller must Decref the return value when done with it.
2218 // Returns NULL on error.
2219 Regexp* Regexp::Parse(const StringPiece& s, ParseFlags global_flags,
2220  RegexpStatus* status) {
2221  // Make status non-NULL (easier on everyone else).
2222  RegexpStatus xstatus;
2223  if (status == NULL)
2224  status = &xstatus;
2225 
2226  ParseState ps(global_flags, s, status);
2227  StringPiece t = s;
2228 
2229  // Convert regexp to UTF-8 (easier on the rest of the parser).
2230  if (global_flags & Latin1) {
2231  std::string* tmp = new std::string;
2233  status->set_tmp(tmp);
2234  t = *tmp;
2235  }
2236 
2237  if (global_flags & Literal) {
2238  // Special parse loop for literal string.
2239  while (!t.empty()) {
2240  Rune r;
2241  if (StringPieceToRune(&r, &t, status) < 0)
2242  return NULL;
2243  if (!ps.PushLiteral(r))
2244  return NULL;
2245  }
2246  return ps.DoFinish();
2247  }
2248 
2249  StringPiece lastunary = StringPiece();
2250  while (!t.empty()) {
2251  StringPiece isunary = StringPiece();
2252  switch (t[0]) {
2253  default: {
2254  Rune r;
2255  if (StringPieceToRune(&r, &t, status) < 0)
2256  return NULL;
2257  if (!ps.PushLiteral(r))
2258  return NULL;
2259  break;
2260  }
2261 
2262  case '(':
2263  // "(?" introduces Perl escape.
2264  if ((ps.flags() & PerlX) && (t.size() >= 2 && t[1] == '?')) {
2265  // Flag changes and non-capturing groups.
2266  if (!ps.ParsePerlFlags(&t))
2267  return NULL;
2268  break;
2269  }
2270  if (ps.flags() & NeverCapture) {
2271  if (!ps.DoLeftParenNoCapture())
2272  return NULL;
2273  } else {
2274  if (!ps.DoLeftParen(StringPiece()))
2275  return NULL;
2276  }
2277  t.remove_prefix(1); // '('
2278  break;
2279 
2280  case '|':
2281  if (!ps.DoVerticalBar())
2282  return NULL;
2283  t.remove_prefix(1); // '|'
2284  break;
2285 
2286  case ')':
2287  if (!ps.DoRightParen())
2288  return NULL;
2289  t.remove_prefix(1); // ')'
2290  break;
2291 
2292  case '^': // Beginning of line.
2293  if (!ps.PushCaret())
2294  return NULL;
2295  t.remove_prefix(1); // '^'
2296  break;
2297 
2298  case '$': // End of line.
2299  if (!ps.PushDollar())
2300  return NULL;
2301  t.remove_prefix(1); // '$'
2302  break;
2303 
2304  case '.': // Any character (possibly except newline).
2305  if (!ps.PushDot())
2306  return NULL;
2307  t.remove_prefix(1); // '.'
2308  break;
2309 
2310  case '[': { // Character class.
2311  Regexp* re;
2312  if (!ps.ParseCharClass(&t, &re, status))
2313  return NULL;
2314  if (!ps.PushRegexp(re))
2315  return NULL;
2316  break;
2317  }
2318 
2319  case '*': { // Zero or more.
2320  RegexpOp op;
2321  op = kRegexpStar;
2322  goto Rep;
2323  case '+': // One or more.
2324  op = kRegexpPlus;
2325  goto Rep;
2326  case '?': // Zero or one.
2327  op = kRegexpQuest;
2328  goto Rep;
2329  Rep:
2330  StringPiece opstr = t;
2331  bool nongreedy = false;
2332  t.remove_prefix(1); // '*' or '+' or '?'
2333  if (ps.flags() & PerlX) {
2334  if (!t.empty() && t[0] == '?') {
2335  nongreedy = true;
2336  t.remove_prefix(1); // '?'
2337  }
2338  if (!lastunary.empty()) {
2339  // In Perl it is not allowed to stack repetition operators:
2340  // a** is a syntax error, not a double-star.
2341  // (and a++ means something else entirely, which we don't support!)
2342  status->set_code(kRegexpRepeatOp);
2343  status->set_error_arg(StringPiece(
2344  lastunary.data(),
2345  static_cast<size_t>(t.data() - lastunary.data())));
2346  return NULL;
2347  }
2348  }
2349  opstr = StringPiece(opstr.data(),
2350  static_cast<size_t>(t.data() - opstr.data()));
2351  if (!ps.PushRepeatOp(op, opstr, nongreedy))
2352  return NULL;
2353  isunary = opstr;
2354  break;
2355  }
2356 
2357  case '{': { // Counted repetition.
2358  int lo, hi;
2359  StringPiece opstr = t;
2360  if (!MaybeParseRepetition(&t, &lo, &hi)) {
2361  // Treat like a literal.
2362  if (!ps.PushLiteral('{'))
2363  return NULL;
2364  t.remove_prefix(1); // '{'
2365  break;
2366  }
2367  bool nongreedy = false;
2368  if (ps.flags() & PerlX) {
2369  if (!t.empty() && t[0] == '?') {
2370  nongreedy = true;
2371  t.remove_prefix(1); // '?'
2372  }
2373  if (!lastunary.empty()) {
2374  // Not allowed to stack repetition operators.
2375  status->set_code(kRegexpRepeatOp);
2376  status->set_error_arg(StringPiece(
2377  lastunary.data(),
2378  static_cast<size_t>(t.data() - lastunary.data())));
2379  return NULL;
2380  }
2381  }
2382  opstr = StringPiece(opstr.data(),
2383  static_cast<size_t>(t.data() - opstr.data()));
2384  if (!ps.PushRepetition(lo, hi, opstr, nongreedy))
2385  return NULL;
2386  isunary = opstr;
2387  break;
2388  }
2389 
2390  case '\\': { // Escaped character or Perl sequence.
2391  // \b and \B: word boundary or not
2392  if ((ps.flags() & Regexp::PerlB) &&
2393  t.size() >= 2 && (t[1] == 'b' || t[1] == 'B')) {
2394  if (!ps.PushWordBoundary(t[1] == 'b'))
2395  return NULL;
2396  t.remove_prefix(2); // '\\', 'b'
2397  break;
2398  }
2399 
2400  if ((ps.flags() & Regexp::PerlX) && t.size() >= 2) {
2401  if (t[1] == 'A') {
2402  if (!ps.PushSimpleOp(kRegexpBeginText))
2403  return NULL;
2404  t.remove_prefix(2); // '\\', 'A'
2405  break;
2406  }
2407  if (t[1] == 'z') {
2408  if (!ps.PushSimpleOp(kRegexpEndText))
2409  return NULL;
2410  t.remove_prefix(2); // '\\', 'z'
2411  break;
2412  }
2413  // Do not recognize \Z, because this library can't
2414  // implement the exact Perl/PCRE semantics.
2415  // (This library treats "(?-m)$" as \z, even though
2416  // in Perl and PCRE it is equivalent to \Z.)
2417 
2418  if (t[1] == 'C') { // \C: any byte [sic]
2419  if (!ps.PushSimpleOp(kRegexpAnyByte))
2420  return NULL;
2421  t.remove_prefix(2); // '\\', 'C'
2422  break;
2423  }
2424 
2425  if (t[1] == 'Q') { // \Q ... \E: the ... is always literals
2426  t.remove_prefix(2); // '\\', 'Q'
2427  while (!t.empty()) {
2428  if (t.size() >= 2 && t[0] == '\\' && t[1] == 'E') {
2429  t.remove_prefix(2); // '\\', 'E'
2430  break;
2431  }
2432  Rune r;
2433  if (StringPieceToRune(&r, &t, status) < 0)
2434  return NULL;
2435  if (!ps.PushLiteral(r))
2436  return NULL;
2437  }
2438  break;
2439  }
2440  }
2441 
2442  if (t.size() >= 2 && (t[1] == 'p' || t[1] == 'P')) {
2443  Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
2444  re->ccb_ = new CharClassBuilder;
2445  switch (ParseUnicodeGroup(&t, ps.flags(), re->ccb_, status)) {
2446  case kParseOk:
2447  if (!ps.PushRegexp(re))
2448  return NULL;
2449  goto Break2;
2450  case kParseError:
2451  re->Decref();
2452  return NULL;
2453  case kParseNothing:
2454  re->Decref();
2455  break;
2456  }
2457  }
2458 
2459  const UGroup *g = MaybeParsePerlCCEscape(&t, ps.flags());
2460  if (g != NULL) {
2461  Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
2462  re->ccb_ = new CharClassBuilder;
2463  AddUGroup(re->ccb_, g, g->sign, ps.flags());
2464  if (!ps.PushRegexp(re))
2465  return NULL;
2466  break;
2467  }
2468 
2469  Rune r;
2470  if (!ParseEscape(&t, &r, status, ps.rune_max()))
2471  return NULL;
2472  if (!ps.PushLiteral(r))
2473  return NULL;
2474  break;
2475  }
2476  }
2477  Break2:
2478  lastunary = isunary;
2479  }
2480  return ps.DoFinish();
2481 }
2482 
2483 } // namespace re2
re2::FactorAlternationImpl::Round1
static void Round1(Regexp **sub, int nsub, Regexp::ParseFlags flags, std::vector< Splice > *splices)
Definition: bloaty/third_party/re2/re2/parse.cc:1028
re2::Regexp::ParseState::ParseCCCharacter
bool ParseCCCharacter(StringPiece *s, Rune *rp, const StringPiece &whole_class, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1858
re2::num_posix_groups
const int num_posix_groups
Definition: bloaty/third_party/re2/re2/perl_groups.cc:117
re2::Regexp::ParseState::PushCaret
bool PushCaret()
Definition: re2/re2/parse.cc:426
re2::URange16
Definition: bloaty/third_party/re2/re2/unicode_groups.h:28
re2::kRegexpEmptyMatch
@ kRegexpEmptyMatch
Definition: bloaty/third_party/re2/re2/regexp.h:107
re2::kRegexpBeginLine
@ kRegexpBeginLine
Definition: bloaty/third_party/re2/re2/regexp.h:142
re2::Regexp::DotNL
@ DotNL
Definition: bloaty/third_party/re2/re2/regexp.h:284
re2::FactorAlternationImpl::Round3
static void Round3(Regexp **sub, int nsub, Regexp::ParseFlags flags, std::vector< Splice > *splices)
Definition: bloaty/third_party/re2/re2/parse.cc:1144
re2::kRegexpNoWordBoundary
@ kRegexpNoWordBoundary
Definition: bloaty/third_party/re2/re2/regexp.h:149
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
re2::Regexp::ParseState::DoFinish
Regexp * DoFinish()
Definition: bloaty/third_party/re2/re2/parse.cc:714
regen-readme.it
it
Definition: regen-readme.py:15
absl::str_format_internal::LengthMod::j
@ j
re2::CharClassBuilder::AddRange
bool AddRange(Rune lo, Rune hi)
Definition: bloaty/third_party/re2/re2/regexp.cc:742
re2::Regexp::operator=
Regexp & operator=(const Regexp &)=delete
re2::OddEvenSkip
@ OddEvenSkip
Definition: bloaty/third_party/re2/re2/unicode_casefold.h:53
re2::Regexp::Decref
void Decref()
Definition: bloaty/third_party/re2/re2/regexp.cc:115
re2::RepetitionWalker::ShortVisit
virtual int ShortVisit(Regexp *re, int parent_arg)
Definition: bloaty/third_party/re2/re2/parse.cc:558
re2::fullrune
int fullrune(const char *str, int n)
Definition: bloaty/third_party/re2/util/rune.cc:192
re2::Regexp::ParseState::FinishRegexp
Regexp * FinishRegexp(Regexp *)
Definition: bloaty/third_party/re2/re2/parse.cc:220
re2::FactorAlternationImpl::Round2
static void Round2(Regexp **sub, int nsub, Regexp::ParseFlags flags, std::vector< Splice > *splices)
Definition: bloaty/third_party/re2/re2/parse.cc:1080
re2::StringPiece::remove_prefix
void remove_prefix(size_type n)
Definition: bloaty/third_party/re2/re2/stringpiece.h:87
re2::kRegexpRepeatOp
@ kRegexpRepeatOp
Definition: bloaty/third_party/re2/re2/regexp.h:183
re2::CharClassBuilder::Negate
void Negate()
Definition: bloaty/third_party/re2/re2/regexp.cc:868
re2::Regexp::ParseState::rune_max
int rune_max()
Definition: re2/re2/parse.cc:78
fix_build_deps.c
list c
Definition: fix_build_deps.py:490
begin
char * begin
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1007
re2::AddUGroup
static void AddUGroup(CharClassBuilder *cc, const UGroup *g, int sign, Regexp::ParseFlags parse_flags)
Definition: bloaty/third_party/re2/re2/parse.cc:1655
re2::IsHex
static int IsHex(int c)
Definition: bloaty/third_party/re2/re2/parse.cc:1427
re2::Regexp::ParseState
Definition: bloaty/third_party/re2/re2/parse.cc:71
uint16_t
unsigned short uint16_t
Definition: stdint-msvc2008.h:79
re2::CharClassBuilder
Definition: bloaty/third_party/re2/re2/regexp.h:592
re2::Regexp::op_
uint8_t op_
Definition: bloaty/third_party/re2/re2/regexp.h:520
re2::Regexp::ParseState::PushSimpleOp
bool PushSimpleOp(RegexpOp op)
Definition: bloaty/third_party/re2/re2/parse.cc:467
re2::CharClass::Contains
bool Contains(Rune r)
Definition: bloaty/third_party/re2/re2/regexp.cc:942
re2::kRegexpLiteralString
@ kRegexpLiteralString
Definition: bloaty/third_party/re2/re2/regexp.h:113
re2::Regexp::ParseState::PushLiteral
bool PushLiteral(Rune r)
Definition: bloaty/third_party/re2/re2/parse.cc:397
re2::RegexpOp
RegexpOp
Definition: bloaty/third_party/re2/re2/regexp.h:102
string.h
re2::Regexp
Definition: bloaty/third_party/re2/re2/regexp.h:274
re2::Regexp::nsub
int nsub()
Definition: bloaty/third_party/re2/re2/regexp.h:322
re2::StringPiece::size
size_type size() const
Definition: bloaty/third_party/re2/re2/stringpiece.h:80
buf
voidpf void * buf
Definition: bloaty/third_party/zlib/contrib/minizip/ioapi.h:136
testing::internal::string
::std::string string
Definition: bloaty/third_party/protobuf/third_party/googletest/googletest/include/gtest/internal/gtest-port.h:881
re2::StringPiece::npos
static const size_type npos
Definition: bloaty/third_party/re2/re2/stringpiece.h:53
re2::kRegexpLiteral
@ kRegexpLiteral
Definition: bloaty/third_party/re2/re2/regexp.h:110
re2::Regexp::LeadingRegexp
static Regexp * LeadingRegexp(Regexp *re)
Definition: bloaty/third_party/re2/re2/parse.cc:729
re2::Frame::Frame
Frame(Regexp **sub, int nsub)
Definition: re2/re2/parse.cc:897
pod_array.h
status
absl::Status status
Definition: rls.cc:251
re2::Regexp::ParseState::MaybeConcatString
bool MaybeConcatString(int r, ParseFlags flags)
Definition: bloaty/third_party/re2/re2/parse.cc:1275
re2::Regexp::ParseState::IsMarker
bool IsMarker(RegexpOp op)
Definition: bloaty/third_party/re2/re2/parse.cc:603
re2
Definition: bloaty/third_party/re2/re2/bitmap256.h:17
re2::Regexp::ParseState::DoLeftParen
bool DoLeftParen(const StringPiece &name)
Definition: bloaty/third_party/re2/re2/parse.cc:609
re2::Regexp::UnicodeGroups
@ UnicodeGroups
Definition: bloaty/third_party/re2/re2/regexp.h:305
absl::FormatConversionChar::s
@ s
re2::RegexpStatus
Definition: bloaty/third_party/re2/re2/regexp.h:190
re2::Regexp::Concat
static Regexp * Concat(Regexp **subs, int nsubs, ParseFlags flags)
Definition: bloaty/third_party/re2/re2/regexp.cc:286
re2::ParseStatus
ParseStatus
Definition: bloaty/third_party/re2/re2/parse.cc:1721
re2::Regexp::ParseState
friend class ParseState
Definition: bloaty/third_party/re2/re2/regexp.h:454
re2::Regexp::Literal
@ Literal
Definition: bloaty/third_party/re2/re2/regexp.h:281
re2::Regexp::cc
CharClass * cc()
Definition: bloaty/third_party/re2/re2/regexp.h:337
re2::Regexp::NeverCapture
@ NeverCapture
Definition: bloaty/third_party/re2/re2/regexp.h:309
re2::Regexp::ParseState::ParseState
ParseState(ParseFlags flags, const StringPiece &whole_regexp, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:194
setup.k
k
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:42
re2::Regexp::OneLine
@ OneLine
Definition: bloaty/third_party/re2/re2/regexp.h:286
re2::Regexp::ParseState::DoCollapse
void DoCollapse(RegexpOp op)
Definition: bloaty/third_party/re2/re2/parse.cc:1202
re2::Regexp::ParseState::PushDollar
bool PushDollar()
Definition: bloaty/third_party/re2/re2/parse.cc:441
nflags
static const int nflags
Definition: adig.c:73
re2::kRegexpWordBoundary
@ kRegexpWordBoundary
Definition: bloaty/third_party/re2/re2/regexp.h:147
grpc_status._async.code
code
Definition: grpcio_status/grpc_status/_async.py:34
re2::Regexp::ParseState::DoLeftParenNoCapture
bool DoLeftParenNoCapture()
Definition: bloaty/third_party/re2/re2/parse.cc:618
re2::Regexp::FUZZING_ONLY_set_maximum_repeat_count
static void FUZZING_ONLY_set_maximum_repeat_count(int i)
Definition: re2/re2/parse.cc:50
re2::Regexp::Latin1
@ Latin1
Definition: bloaty/third_party/re2/re2/regexp.h:289
re2::UnHex
static int UnHex(int c)
Definition: bloaty/third_party/re2/re2/parse.cc:1434
re2::Regexp::LiteralString
static Regexp * LiteralString(Rune *runes, int nrunes, ParseFlags flags)
Definition: bloaty/third_party/re2/re2/regexp.cc:321
re2::ParseUnicodeGroup
ParseStatus ParseUnicodeGroup(StringPiece *s, Regexp::ParseFlags parse_flags, CharClassBuilder *cc, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1729
re2::kRegexpEndText
@ kRegexpEndText
Definition: bloaty/third_party/re2/re2/regexp.h:154
re2::Regexp::PerlClasses
@ PerlClasses
Definition: bloaty/third_party/re2/re2/regexp.h:291
re2::Regexp::ParseState::ncap_
int ncap_
Definition: bloaty/third_party/re2/re2/parse.cc:183
re2::Regexp::ParseState::ParseCCRange
bool ParseCCRange(StringPiece *s, RuneRange *rr, const StringPiece &whole_class, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1881
re2::CaseFold
Definition: bloaty/third_party/re2/re2/unicode_casefold.h:56
re2::RepetitionWalker::PreVisit
virtual int PreVisit(Regexp *re, int parent_arg, bool *stop)
Definition: bloaty/third_party/re2/re2/parse.cc:533
re2::Regexp::ParseState::operator=
ParseState & operator=(const ParseState &)=delete
re2::RepetitionWalker::PostVisit
virtual int PostVisit(Regexp *re, int parent_arg, int pre_arg, int *child_args, int nchild_args)
Definition: bloaty/third_party/re2/re2/parse.cc:547
re2::RepetitionWalker::RepetitionWalker
RepetitionWalker()
Definition: re2/re2/parse.cc:522
re2::CharClass
Definition: bloaty/third_party/re2/re2/regexp.h:242
re2::Regexp::ParseState::DoAlternation
void DoAlternation()
Definition: bloaty/third_party/re2/re2/parse.cc:1256
start
static uint64_t start
Definition: benchmark-pound.c:74
re2::CharClassBuilder::Contains
bool Contains(Rune r)
Definition: bloaty/third_party/re2/re2/regexp.cc:813
re2::Regexp::ParseState::PushRepeatOp
bool PushRepeatOp(RegexpOp op, const StringPiece &s, bool nongreedy)
Definition: bloaty/third_party/re2/re2/parse.cc:475
re2::Regexp::rune
Rune rune()
Definition: bloaty/third_party/re2/re2/regexp.h:336
benchmark::internal::AddRange
void AddRange(std::vector< T > *dst, T lo, T hi, int mult)
Definition: benchmark_register.h:59
autogen_x86imm.f
f
Definition: autogen_x86imm.py:9
re2::kRegexpMissingParen
@ kRegexpMissingParen
Definition: bloaty/third_party/re2/re2/regexp.h:179
re2::Regexp::Swap
void Swap(Regexp *that)
Definition: bloaty/third_party/re2/re2/regexp.cc:338
end
char * end
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1008
re2::Regexp::NoParseFlags
@ NoParseFlags
Definition: bloaty/third_party/re2/re2/regexp.h:279
re2::RepetitionWalker
Definition: bloaty/third_party/re2/re2/parse.cc:520
re2::any32
static URange32 any32[]
Definition: bloaty/third_party/re2/re2/parse.cc:1642
re2::kRegexpConcat
@ kRegexpConcat
Definition: bloaty/third_party/re2/re2/regexp.h:116
re2::Regexp::ParseState::DoVerticalBar
bool DoVerticalBar()
Definition: bloaty/third_party/re2/re2/parse.cc:625
FALLTHROUGH_INTENDED
#define FALLTHROUGH_INTENDED
Definition: bloaty/third_party/re2/util/util.h:26
re2::Regexp::ParseState::flags_
ParseFlags flags_
Definition: bloaty/third_party/re2/re2/parse.cc:179
LOG
#define LOG(severity)
Definition: bloaty/third_party/re2/util/logging.h:53
re2::Regexp::ParseState::flags
ParseFlags flags()
Definition: re2/re2/parse.cc:77
re2::Regexp::ParseState::ParseCharClass
bool ParseCharClass(StringPiece *s, Regexp **out_re, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1907
re2::MaybeParsePerlCCEscape
const UGroup * MaybeParsePerlCCEscape(StringPiece *s, Regexp::ParseFlags parse_flags)
Definition: bloaty/third_party/re2/re2/parse.cc:1706
re2::Runeself
@ Runeself
Definition: bloaty/third_party/re2/util/utf.h:31
re2::kRegexpAnyChar
@ kRegexpAnyChar
Definition: bloaty/third_party/re2/re2/regexp.h:136
re2::IsValidCaptureName
static bool IsValidCaptureName(const StringPiece &name)
Definition: bloaty/third_party/re2/re2/parse.cc:2018
re2::runetochar
int runetochar(char *str, const Rune *rune)
Definition: bloaty/third_party/re2/util/rune.cc:127
re2::kParseNothing
@ kParseNothing
Definition: bloaty/third_party/re2/re2/parse.cc:1724
re2::IsValidUTF8
static bool IsValidUTF8(const StringPiece &s, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1416
round
static int round(int n)
Definition: bloaty/third_party/re2/util/benchmark.cc:91
re2::kRegexpBadEscape
@ kRegexpBadEscape
Definition: bloaty/third_party/re2/re2/regexp.h:175
re2::kRegexpCharClass
@ kRegexpCharClass
Definition: bloaty/third_party/re2/re2/regexp.h:157
re2::Regexp::Parse
static Regexp * Parse(const StringPiece &s, ParseFlags flags, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:2200
re2::Regexp::sub
Regexp ** sub()
Definition: bloaty/third_party/re2/re2/regexp.h:327
done
struct tab * done
Definition: bloaty/third_party/zlib/examples/enough.c:176
re2::kRegexpRepeatArgument
@ kRegexpRepeatArgument
Definition: bloaty/third_party/re2/re2/regexp.h:181
re2::Regexp::nsub_
uint16_t nsub_
Definition: bloaty/third_party/re2/re2/regexp.h:549
re2::kParseOk
@ kParseOk
Definition: bloaty/third_party/re2/re2/parse.cc:1722
re2::num_unicode_groups
const int num_unicode_groups
Definition: bloaty/third_party/re2/re2/unicode_groups.cc:6157
re2::Regexp::ParseState::rune_max_
int rune_max_
Definition: bloaty/third_party/re2/re2/parse.cc:184
re2::kRegexpRepeatSize
@ kRegexpRepeatSize
Definition: bloaty/third_party/re2/re2/regexp.h:182
arg
Definition: cmdline.cc:40
re2::Regexp::ClassNL
@ ClassNL
Definition: bloaty/third_party/re2/re2/regexp.h:282
re2::Regexp::ParseState::ParsePerlFlags
bool ParsePerlFlags(StringPiece *s)
Definition: bloaty/third_party/re2/re2/parse.cc:2038
re2::num_unicode_casefold
const int num_unicode_casefold
Definition: bloaty/third_party/re2/re2/unicode_casefold.cc:369
re2::perl_groups
const UGroup perl_groups[]
Definition: bloaty/third_party/re2/re2/perl_groups.cc:22
re2::Regexp::LeadingString
static Rune * LeadingString(Regexp *re, int *nrune, ParseFlags *flags)
Definition: bloaty/third_party/re2/re2/parse.cc:774
status_
absl::Status status_
Definition: outlier_detection.cc:404
re2::CharClass::iterator
RuneRange * iterator
Definition: bloaty/third_party/re2/re2/regexp.h:246
re2::posix_groups
const UGroup posix_groups[]
Definition: bloaty/third_party/re2/re2/perl_groups.cc:87
re2::Regexp::FactorAlternation
static int FactorAlternation(Regexp **sub, int nsub, ParseFlags flags)
Definition: bloaty/third_party/re2/re2/parse.cc:932
re2::LookupUnicodeGroup
static const UGroup * LookupUnicodeGroup(const StringPiece &name)
Definition: bloaty/third_party/re2/re2/parse.cc:1646
re2::kRegexpAlternate
@ kRegexpAlternate
Definition: bloaty/third_party/re2/re2/regexp.h:118
re2::CharClass::end
iterator end()
Definition: bloaty/third_party/re2/re2/regexp.h:248
min
#define min(a, b)
Definition: qsort.h:83
re2::Regexp::NewCharClass
static Regexp * NewCharClass(CharClass *cc, ParseFlags flags)
Definition: bloaty/third_party/re2/re2/regexp.cc:332
re2::Regexp::down_
Regexp * down_
Definition: bloaty/third_party/re2/re2/regexp.h:557
g
struct @717 g
re2::Regexp::name
const std::string * name()
Definition: bloaty/third_party/re2/re2/regexp.h:339
re2::LookupCaseFold
const CaseFold * LookupCaseFold(const CaseFold *f, int n, Rune r)
Definition: bloaty/third_party/re2/re2/parse.cc:272
re2::MaybeParseRepetition
static bool MaybeParseRepetition(StringPiece *sp, int *lo, int *hi)
Definition: bloaty/third_party/re2/re2/parse.cc:1353
re2::CharClassBuilder::AddRangeFlags
void AddRangeFlags(Rune lo, Rune hi, Regexp::ParseFlags parse_flags)
Definition: bloaty/third_party/re2/re2/parse.cc:1599
re2::kParseError
@ kParseError
Definition: bloaty/third_party/re2/re2/parse.cc:1723
re2::Regexp::ParseFlags
ParseFlags
Definition: bloaty/third_party/re2/re2/regexp.h:278
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
re2::AddFoldedRange
static void AddFoldedRange(CharClassBuilder *cc, Rune lo, Rune hi, int depth)
Definition: bloaty/third_party/re2/re2/parse.cc:345
re2::Regexp::ParseState::status_
RegexpStatus * status_
Definition: bloaty/third_party/re2/re2/parse.cc:181
stdint.h
re2::kRegexpBadUTF8
@ kRegexpBadUTF8
Definition: bloaty/third_party/re2/re2/regexp.h:185
re2::ParseEscape
static bool ParseEscape(StringPiece *s, Rune *rp, RegexpStatus *status, int rune_max)
Definition: bloaty/third_party/re2/re2/parse.cc:1448
re2::Regexp::min
int min()
Definition: bloaty/third_party/re2/re2/regexp.h:334
arraysize
#define arraysize(array)
Definition: benchmark/src/arraysize.h:28
re2::kRegexpStar
@ kRegexpStar
Definition: bloaty/third_party/re2/re2/regexp.h:121
re2::LookupPerlGroup
static const UGroup * LookupPerlGroup(const StringPiece &name)
Definition: bloaty/third_party/re2/re2/parse.cc:1635
re2::Regexp::RemoveLeadingString
static void RemoveLeadingString(Regexp *re, int n)
Definition: bloaty/third_party/re2/re2/parse.cc:797
re2::Regexp::parse_flags
ParseFlags parse_flags()
Definition: bloaty/third_party/re2/re2/regexp.h:324
re2::Regexp::max
int max()
Definition: bloaty/third_party/re2/re2/regexp.h:335
re2::LookupGroup
static const UGroup * LookupGroup(const StringPiece &name, const UGroup *groups, int ngroups)
Definition: bloaty/third_party/re2/re2/parse.cc:1621
re2::Regexp::ParseState::stacktop_
Regexp * stacktop_
Definition: bloaty/third_party/re2/re2/parse.cc:182
re2::Regexp::op
RegexpOp op()
Definition: bloaty/third_party/re2/re2/regexp.h:321
re2::unicode_groups
const UGroup unicode_groups[]
Definition: bloaty/third_party/re2/re2/unicode_groups.cc:5967
re2::StringPiece::data
const_pointer data() const
Definition: bloaty/third_party/re2/re2/stringpiece.h:85
re2::kRegexpBadNamedCapture
@ kRegexpBadNamedCapture
Definition: bloaty/third_party/re2/re2/regexp.h:186
re2::Regexp::Equal
static bool Equal(Regexp *a, Regexp *b)
Definition: bloaty/third_party/re2/re2/regexp.cc:415
absl::hash_internal::c1
static const uint32_t c1
Definition: abseil-cpp/absl/hash/internal/city.cc:58
re2::ParseCCName
static ParseStatus ParseCCName(StringPiece *s, Regexp::ParseFlags parse_flags, CharClassBuilder *cc, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1820
re2::Regexp::ConcatOrAlternate
static Regexp * ConcatOrAlternate(RegexpOp op, Regexp **subs, int nsubs, ParseFlags flags, bool can_factor)
Definition: bloaty/third_party/re2/re2/regexp.cc:234
re2::kRegexpAnyByte
@ kRegexpAnyByte
Definition: bloaty/third_party/re2/re2/regexp.h:139
re2::Regexp::ParseState::~ParseState
~ParseState()
Definition: bloaty/third_party/re2/re2/parse.cc:206
make_dist_html.groups
list groups
Definition: make_dist_html.py:120
re2::kRegexpTrailingBackslash
@ kRegexpTrailingBackslash
Definition: bloaty/third_party/re2/re2/regexp.h:180
upload.group
group
Definition: bloaty/third_party/googletest/googlemock/scripts/upload.py:397
re2::kRegexpBadPerlOp
@ kRegexpBadPerlOp
Definition: bloaty/third_party/re2/re2/regexp.h:184
re2::Regexp::ParseState::whole_regexp_
StringPiece whole_regexp_
Definition: bloaty/third_party/re2/re2/parse.cc:180
re2::CharClass::begin
iterator begin()
Definition: bloaty/third_party/re2/re2/regexp.h:247
re2::kVerticalBar
const RegexpOp kVerticalBar
Definition: bloaty/third_party/re2/re2/parse.cc:192
re2::Regexp::NonGreedy
@ NonGreedy
Definition: bloaty/third_party/re2/re2/regexp.h:290
absl::flags_internal
Definition: abseil-cpp/absl/flags/commandlineflag.h:40
re2::URange32
Definition: bloaty/third_party/re2/re2/unicode_groups.h:34
re2::kRegexpBadCharRange
@ kRegexpBadCharRange
Definition: bloaty/third_party/re2/re2/regexp.h:177
re2::anygroup
static UGroup anygroup
Definition: bloaty/third_party/re2/re2/parse.cc:1643
re2::RuneRange
Definition: bloaty/third_party/re2/re2/regexp.h:225
re2::Rune
signed int Rune
Definition: bloaty/third_party/re2/util/utf.h:25
absl::str_format_internal::LengthMod::t
@ t
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
re2::CycleFoldRune
Rune CycleFoldRune(Rune r)
Definition: bloaty/third_party/re2/re2/parse.cc:335
next
AllocList * next[kMaxLevel]
Definition: abseil-cpp/absl/base/internal/low_level_alloc.cc:100
re2::OddEven
@ OddEven
Definition: bloaty/third_party/re2/re2/unicode_casefold.h:51
re2::Regexp::RemoveLeadingRegexp
static Regexp * RemoveLeadingRegexp(Regexp *re)
Definition: bloaty/third_party/re2/re2/parse.cc:745
re2::ConvertLatin1ToUTF8
void ConvertLatin1ToUTF8(const StringPiece &latin1, std::string *utf)
Definition: bloaty/third_party/re2/re2/parse.cc:2185
fix_build_deps.r
r
Definition: fix_build_deps.py:491
first
StrT first
Definition: cxa_demangle.cpp:4884
re2::kRegexpUnexpectedParen
@ kRegexpUnexpectedParen
Definition: re2/re2/regexp.h:181
re2::Regexp::AlternateNoFactor
static Regexp * AlternateNoFactor(Regexp **subs, int nsubs, ParseFlags flags)
Definition: bloaty/third_party/re2/re2/regexp.cc:294
re2::Regexp::ParseState::DoRightParen
bool DoRightParen()
Definition: bloaty/third_party/re2/re2/parse.cc:675
re2::chartorune
int chartorune(Rune *rune, const char *str)
Definition: bloaty/third_party/re2/util/rune.cc:51
prefix
static const char prefix[]
Definition: head_of_line_blocking.cc:28
re2::kRegexpRepeat
@ kRegexpRepeat
Definition: bloaty/third_party/re2/re2/regexp.h:129
re2::EvenOddSkip
@ EvenOddSkip
Definition: bloaty/third_party/re2/re2/unicode_casefold.h:52
arg
struct arg arg
re2::EvenOdd
@ EvenOdd
Definition: bloaty/third_party/re2/re2/unicode_casefold.h:50
re2::kMaxRegexpOp
@ kMaxRegexpOp
Definition: bloaty/third_party/re2/re2/regexp.h:163
re2::num_perl_groups
const int num_perl_groups
Definition: bloaty/third_party/re2/re2/perl_groups.cc:30
re2::unicode_casefold
const CaseFold unicode_casefold[]
Definition: bloaty/third_party/re2/re2/unicode_casefold.cc:11
re2::Runeerror
@ Runeerror
Definition: bloaty/third_party/re2/util/utf.h:32
re2::kRegexpBeginText
@ kRegexpBeginText
Definition: bloaty/third_party/re2/re2/regexp.h:152
re2::Regexp::PerlB
@ PerlB
Definition: bloaty/third_party/re2/re2/regexp.h:292
re2::kRegexpInternalError
@ kRegexpInternalError
Definition: bloaty/third_party/re2/re2/regexp.h:172
re2::any16
static URange16 any16[]
Definition: bloaty/third_party/re2/re2/parse.cc:1641
re2::LookupPosixGroup
static const UGroup * LookupPosixGroup(const StringPiece &name)
Definition: bloaty/third_party/re2/re2/parse.cc:1631
re2::StringPieceToRune
static int StringPieceToRune(Rune *r, StringPiece *sp, RegexpStatus *status)
Definition: bloaty/third_party/re2/re2/parse.cc:1390
re2::kRegexpEndLine
@ kRegexpEndLine
Definition: bloaty/third_party/re2/re2/regexp.h:144
re2::maximum_repeat_count
static int maximum_repeat_count
Definition: re2/re2/parse.cc:48
stop
static const char stop[]
Definition: benchmark-async-pummel.c:35
re2::Regexp::ParseState::PushRegexp
bool PushRegexp(Regexp *re)
Definition: bloaty/third_party/re2/re2/parse.cc:237
re2::Regexp::FactorAlternationImpl
friend class FactorAlternationImpl
Definition: bloaty/third_party/re2/re2/regexp.h:497
re2::Regexp::WasDollar
@ WasDollar
Definition: bloaty/third_party/re2/re2/regexp.h:316
re2::kRegexpCapture
@ kRegexpCapture
Definition: bloaty/third_party/re2/re2/regexp.h:133
re2::ParseInteger
static bool ParseInteger(StringPiece *s, int *np)
Definition: bloaty/third_party/re2/re2/parse.cc:1325
iter
Definition: test_winkernel.cpp:47
re2::Regexp::ParseState::PushRepetition
bool PushRepetition(int min, int max, const StringPiece &s, bool nongreedy)
Definition: bloaty/third_party/re2/re2/parse.cc:567
re2::Regexp::NeverNL
@ NeverNL
Definition: bloaty/third_party/re2/re2/regexp.h:307
re2::kLeftParen
const RegexpOp kLeftParen
Definition: bloaty/third_party/re2/re2/parse.cc:191
re2::Regexp::ParseState::PushWordBoundary
bool PushWordBoundary(bool word)
Definition: bloaty/third_party/re2/re2/parse.cc:434
flags
uint32_t flags
Definition: retry_filter.cc:632
re2::kRegexpPlus
@ kRegexpPlus
Definition: bloaty/third_party/re2/re2/regexp.h:123
make_curve25519_tables.d
int d
Definition: make_curve25519_tables.py:53
re2::kRegexpNoMatch
@ kRegexpNoMatch
Definition: bloaty/third_party/re2/re2/regexp.h:104
code
Definition: bloaty/third_party/zlib/contrib/infback9/inftree9.h:24
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
re2::Regexp::ParseState::PushDot
bool PushDot()
Definition: bloaty/third_party/re2/re2/parse.cc:455
re2::ApplyFold
Rune ApplyFold(const CaseFold *f, Rune r)
Definition: bloaty/third_party/re2/re2/parse.cc:300
re2::Regexp::PerlX
@ PerlX
Definition: bloaty/third_party/re2/re2/regexp.h:293
re2::Regexp::ParseState::DoConcatenation
void DoConcatenation()
Definition: bloaty/third_party/re2/re2/parse.cc:1244
re2::CharClassBuilder::GetCharClass
CharClass * GetCharClass()
Definition: bloaty/third_party/re2/re2/regexp.cc:959
re2::Regexp::ccb_
CharClassBuilder * ccb_
Definition: bloaty/third_party/re2/re2/regexp.h:578
mkowners.depth
depth
Definition: mkowners.py:114
regress.m
m
Definition: regress/regress.py:25
re2::UGroup
Definition: bloaty/third_party/re2/re2/unicode_groups.h:40
subs
template_param_type subs
Definition: cxa_demangle.cpp:4906
re2::StringPiece
Definition: bloaty/third_party/re2/re2/stringpiece.h:39
re2::kRegexpQuest
@ kRegexpQuest
Definition: bloaty/third_party/re2/re2/regexp.h:125
re2::Runemax
@ Runemax
Definition: bloaty/third_party/re2/util/utf.h:33
binary_size.old
string old
Definition: binary_size.py:128
re2::kRegexpMissingBracket
@ kRegexpMissingBracket
Definition: bloaty/third_party/re2/re2/regexp.h:178
re2::Splice::Splice
Splice(Regexp *prefix, Regexp **sub, int nsub)
Definition: re2/re2/parse.cc:880
re2::Regexp::FoldCase
@ FoldCase
Definition: bloaty/third_party/re2/re2/regexp.h:280
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
re2::Regexp::Regexp
Regexp(RegexpOp op, ParseFlags parse_flags)
Definition: bloaty/third_party/re2/re2/regexp.cc:29
re2::UTFmax
@ UTFmax
Definition: bloaty/third_party/re2/util/utf.h:29


grpc
Author(s):
autogenerated on Fri May 16 2025 02:59:39