p256.c
Go to the documentation of this file.
1 /* Copyright (c) 2020, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // An implementation of the NIST P-256 elliptic curve point multiplication.
16 // 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
17 // Fiat, which lives in //third_party/fiat.
18 
19 #include <openssl/base.h>
20 
21 #include <openssl/bn.h>
22 #include <openssl/ec.h>
23 #include <openssl/err.h>
24 #include <openssl/mem.h>
25 #include <openssl/type_check.h>
26 
27 #include <assert.h>
28 #include <string.h>
29 
30 #include "../../internal.h"
31 #include "../delocate.h"
32 #include "./internal.h"
33 
34 
35 // MSVC does not implement uint128_t, and crashes with intrinsics
36 #if defined(BORINGSSL_HAS_UINT128)
37 #define BORINGSSL_NISTP256_64BIT 1
38 #include "../../../third_party/fiat/p256_64.h"
39 #else
40 #include "../../../third_party/fiat/p256_32.h"
41 #endif
42 
43 
44 // utility functions, handwritten
45 
46 #if defined(BORINGSSL_NISTP256_64BIT)
47 #define FIAT_P256_NLIMBS 4
50 static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000,
51  0xffffffffffffffff, 0xfffffffe};
52 #else // 64BIT; else 32BIT
53 #define FIAT_P256_NLIMBS 8
57  0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0};
58 #endif // 64BIT
59 
60 
64  fiat_p256_nonzero(&ret, in1);
65  return ret;
66 }
67 
70  for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) {
71  out[i] = in1[i];
72  }
73 }
74 
79  fiat_p256_selectznz(out, !!t, z, nz);
80 }
81 
83  fiat_p256_from_bytes(out, in->bytes);
84 }
85 
87  // This works because 256 is a multiple of 64, so there are no excess bytes to
88  // zero when rounding up to |BN_ULONG|s.
90  256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
91  "fiat_p256_to_bytes leaves bytes uninitialized");
92  fiat_p256_to_bytes(out->bytes, in);
93 }
94 
95 // fiat_p256_inv_square calculates |out| = |in|^{-2}
96 //
97 // Based on Fermat's Little Theorem:
98 // a^p = a (mod p)
99 // a^{p-1} = 1 (mod p)
100 // a^{p-3} = a^{-2} (mod p)
102  const fiat_p256_felem in) {
103  // This implements the addition chain described in
104  // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
105  fiat_p256_felem x2, x3, x6, x12, x15, x30, x32;
106  fiat_p256_square(x2, in); // 2^2 - 2^1
107  fiat_p256_mul(x2, x2, in); // 2^2 - 2^0
108 
109  fiat_p256_square(x3, x2); // 2^3 - 2^1
110  fiat_p256_mul(x3, x3, in); // 2^3 - 2^0
111 
112  fiat_p256_square(x6, x3);
113  for (int i = 1; i < 3; i++) {
114  fiat_p256_square(x6, x6);
115  } // 2^6 - 2^3
116  fiat_p256_mul(x6, x6, x3); // 2^6 - 2^0
117 
118  fiat_p256_square(x12, x6);
119  for (int i = 1; i < 6; i++) {
120  fiat_p256_square(x12, x12);
121  } // 2^12 - 2^6
122  fiat_p256_mul(x12, x12, x6); // 2^12 - 2^0
123 
124  fiat_p256_square(x15, x12);
125  for (int i = 1; i < 3; i++) {
126  fiat_p256_square(x15, x15);
127  } // 2^15 - 2^3
128  fiat_p256_mul(x15, x15, x3); // 2^15 - 2^0
129 
130  fiat_p256_square(x30, x15);
131  for (int i = 1; i < 15; i++) {
132  fiat_p256_square(x30, x30);
133  } // 2^30 - 2^15
134  fiat_p256_mul(x30, x30, x15); // 2^30 - 2^0
135 
136  fiat_p256_square(x32, x30);
137  fiat_p256_square(x32, x32); // 2^32 - 2^2
138  fiat_p256_mul(x32, x32, x2); // 2^32 - 2^0
139 
141  fiat_p256_square(ret, x32);
142  for (int i = 1; i < 31 + 1; i++) {
144  } // 2^64 - 2^32
145  fiat_p256_mul(ret, ret, in); // 2^64 - 2^32 + 2^0
146 
147  for (int i = 0; i < 96 + 32; i++) {
149  } // 2^192 - 2^160 + 2^128
150  fiat_p256_mul(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
151 
152  for (int i = 0; i < 32; i++) {
154  } // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
155  fiat_p256_mul(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
156 
157  for (int i = 0; i < 30; i++) {
159  } // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
160  fiat_p256_mul(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
161 
163  fiat_p256_square(out, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
164 }
165 
166 // Group operations
167 // ----------------
168 //
169 // Building on top of the field operations we have the operations on the
170 // elliptic curve group itself. Points on the curve are represented in Jacobian
171 // coordinates.
172 //
173 // Both operations were transcribed to Coq and proven to correspond to naive
174 // implementations using Affine coordinates, for all suitable fields. In the
175 // Coq proofs, issues of constant-time execution and memory layout (aliasing)
176 // conventions were not considered. Specification of affine coordinates:
177 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
178 // As a sanity check, a proof that these points form a commutative group:
179 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
180 
181 // fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
182 //
183 // The method is taken from:
184 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
185 //
186 // Coq transcription and correctness proof:
187 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
188 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
189 //
190 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
191 // while x_out == y_in is not (maybe this works, but it's not tested).
193  fiat_p256_felem z_out,
194  const fiat_p256_felem x_in,
195  const fiat_p256_felem y_in,
196  const fiat_p256_felem z_in) {
197  fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
198  // delta = z^2
199  fiat_p256_square(delta, z_in);
200  // gamma = y^2
201  fiat_p256_square(gamma, y_in);
202  // beta = x*gamma
203  fiat_p256_mul(beta, x_in, gamma);
204 
205  // alpha = 3*(x-delta)*(x+delta)
206  fiat_p256_sub(ftmp, x_in, delta);
207  fiat_p256_add(ftmp2, x_in, delta);
208 
209  fiat_p256_add(tmptmp, ftmp2, ftmp2);
210  fiat_p256_add(ftmp2, ftmp2, tmptmp);
211  fiat_p256_mul(alpha, ftmp, ftmp2);
212 
213  // x' = alpha^2 - 8*beta
214  fiat_p256_square(x_out, alpha);
215  fiat_p256_add(fourbeta, beta, beta);
216  fiat_p256_add(fourbeta, fourbeta, fourbeta);
217  fiat_p256_add(tmptmp, fourbeta, fourbeta);
218  fiat_p256_sub(x_out, x_out, tmptmp);
219 
220  // z' = (y + z)^2 - gamma - delta
221  fiat_p256_add(delta, gamma, delta);
222  fiat_p256_add(ftmp, y_in, z_in);
223  fiat_p256_square(z_out, ftmp);
224  fiat_p256_sub(z_out, z_out, delta);
225 
226  // y' = alpha*(4*beta - x') - 8*gamma^2
227  fiat_p256_sub(y_out, fourbeta, x_out);
228  fiat_p256_add(gamma, gamma, gamma);
229  fiat_p256_square(gamma, gamma);
230  fiat_p256_mul(y_out, alpha, y_out);
231  fiat_p256_add(gamma, gamma, gamma);
232  fiat_p256_sub(y_out, y_out, gamma);
233 }
234 
235 // fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
236 //
237 // The method is taken from:
238 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
239 // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
240 //
241 // Coq transcription and correctness proof:
242 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
243 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
244 //
245 // This function includes a branch for checking whether the two input points
246 // are equal, (while not equal to the point at infinity). This case never
247 // happens during single point multiplication, so there is no timing leak for
248 // ECDH or ECDSA signing.
250  fiat_p256_felem z3, const fiat_p256_felem x1,
251  const fiat_p256_felem y1,
252  const fiat_p256_felem z1, const int mixed,
253  const fiat_p256_felem x2,
254  const fiat_p256_felem y2,
255  const fiat_p256_felem z2) {
256  fiat_p256_felem x_out, y_out, z_out;
257  fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
258  fiat_p256_limb_t z2nz = fiat_p256_nz(z2);
259 
260  // z1z1 = z1z1 = z1**2
261  fiat_p256_felem z1z1;
262  fiat_p256_square(z1z1, z1);
263 
264  fiat_p256_felem u1, s1, two_z1z2;
265  if (!mixed) {
266  // z2z2 = z2**2
267  fiat_p256_felem z2z2;
268  fiat_p256_square(z2z2, z2);
269 
270  // u1 = x1*z2z2
271  fiat_p256_mul(u1, x1, z2z2);
272 
273  // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
274  fiat_p256_add(two_z1z2, z1, z2);
275  fiat_p256_square(two_z1z2, two_z1z2);
276  fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
277  fiat_p256_sub(two_z1z2, two_z1z2, z2z2);
278 
279  // s1 = y1 * z2**3
280  fiat_p256_mul(s1, z2, z2z2);
281  fiat_p256_mul(s1, s1, y1);
282  } else {
283  // We'll assume z2 = 1 (special case z2 = 0 is handled later).
284 
285  // u1 = x1*z2z2
286  fiat_p256_copy(u1, x1);
287  // two_z1z2 = 2z1z2
288  fiat_p256_add(two_z1z2, z1, z1);
289  // s1 = y1 * z2**3
290  fiat_p256_copy(s1, y1);
291  }
292 
293  // u2 = x2*z1z1
294  fiat_p256_felem u2;
295  fiat_p256_mul(u2, x2, z1z1);
296 
297  // h = u2 - u1
298  fiat_p256_felem h;
299  fiat_p256_sub(h, u2, u1);
300 
301  fiat_p256_limb_t xneq = fiat_p256_nz(h);
302 
303  // z_out = two_z1z2 * h
304  fiat_p256_mul(z_out, h, two_z1z2);
305 
306  // z1z1z1 = z1 * z1z1
307  fiat_p256_felem z1z1z1;
308  fiat_p256_mul(z1z1z1, z1, z1z1);
309 
310  // s2 = y2 * z1**3
311  fiat_p256_felem s2;
312  fiat_p256_mul(s2, y2, z1z1z1);
313 
314  // r = (s2 - s1)*2
316  fiat_p256_sub(r, s2, s1);
317  fiat_p256_add(r, r, r);
318 
320 
321  fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
322  ~constant_time_is_zero_w(z1nz) &
324  if (is_nontrivial_double) {
325  fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
326  return;
327  }
328 
329  // I = (2h)**2
331  fiat_p256_add(i, h, h);
332  fiat_p256_square(i, i);
333 
334  // J = h * I
335  fiat_p256_felem j;
336  fiat_p256_mul(j, h, i);
337 
338  // V = U1 * I
340  fiat_p256_mul(v, u1, i);
341 
342  // x_out = r**2 - J - 2V
343  fiat_p256_square(x_out, r);
344  fiat_p256_sub(x_out, x_out, j);
345  fiat_p256_sub(x_out, x_out, v);
346  fiat_p256_sub(x_out, x_out, v);
347 
348  // y_out = r(V-x_out) - 2 * s1 * J
349  fiat_p256_sub(y_out, v, x_out);
350  fiat_p256_mul(y_out, y_out, r);
351  fiat_p256_felem s1j;
352  fiat_p256_mul(s1j, s1, j);
353  fiat_p256_sub(y_out, y_out, s1j);
354  fiat_p256_sub(y_out, y_out, s1j);
355 
356  fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
357  fiat_p256_cmovznz(x3, z2nz, x1, x_out);
358  fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
359  fiat_p256_cmovznz(y3, z2nz, y1, y_out);
360  fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
361  fiat_p256_cmovznz(z3, z2nz, z1, z_out);
362 }
363 
364 #include "./p256_table.h"
365 
366 // fiat_p256_select_point_affine selects the |idx-1|th point from a
367 // precomputation table and copies it to out. If |idx| is zero, the output is
368 // the point at infinity.
370  const fiat_p256_limb_t idx, size_t size,
371  const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) {
372  OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
373  for (size_t i = 0; i < size; i++) {
374  fiat_p256_limb_t mismatch = i ^ (idx - 1);
375  fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
376  fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
377  }
379 }
380 
381 // fiat_p256_select_point selects the |idx|th point from a precomputation table
382 // and copies it to out.
384  const fiat_p256_felem pre_comp[/*size*/][3],
385  fiat_p256_felem out[3]) {
386  OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
387  for (size_t i = 0; i < size; i++) {
388  fiat_p256_limb_t mismatch = i ^ idx;
389  fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
390  fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
391  fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
392  }
393 }
394 
395 // fiat_p256_get_bit returns the |i|th bit in |in|
396 static crypto_word_t fiat_p256_get_bit(const uint8_t *in, int i) {
397  if (i < 0 || i >= 256) {
398  return 0;
399  }
400  return (in[i >> 3] >> (i & 7)) & 1;
401 }
402 
403 // OPENSSL EC_METHOD FUNCTIONS
404 
405 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
406 // (X/Z^2, Y/Z^3).
408  const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
409  EC_FELEM *y_out) {
412  return 0;
413  }
414 
415  fiat_p256_felem z1, z2;
416  fiat_p256_from_generic(z1, &point->Z);
417  fiat_p256_inv_square(z2, z1);
418 
419  if (x_out != NULL) {
422  fiat_p256_mul(x, x, z2);
423  fiat_p256_to_generic(x_out, x);
424  }
425 
426  if (y_out != NULL) {
429  fiat_p256_square(z2, z2); // z^-4
430  fiat_p256_mul(y, y, z1); // y * z
431  fiat_p256_mul(y, y, z2); // y * z^-3
432  fiat_p256_to_generic(y_out, y);
433  }
434 
435  return 1;
436 }
437 
439  const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
440  fiat_p256_felem x1, y1, z1, x2, y2, z2;
441  fiat_p256_from_generic(x1, &a->X);
442  fiat_p256_from_generic(y1, &a->Y);
443  fiat_p256_from_generic(z1, &a->Z);
444  fiat_p256_from_generic(x2, &b->X);
445  fiat_p256_from_generic(y2, &b->Y);
446  fiat_p256_from_generic(z2, &b->Z);
447  fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2,
448  z2);
449  fiat_p256_to_generic(&r->X, x1);
450  fiat_p256_to_generic(&r->Y, y1);
451  fiat_p256_to_generic(&r->Z, z1);
452 }
453 
455  const EC_RAW_POINT *a) {
456  fiat_p256_felem x, y, z;
457  fiat_p256_from_generic(x, &a->X);
458  fiat_p256_from_generic(y, &a->Y);
459  fiat_p256_from_generic(z, &a->Z);
460  fiat_p256_point_double(x, y, z, x, y, z);
461  fiat_p256_to_generic(&r->X, x);
462  fiat_p256_to_generic(&r->Y, y);
463  fiat_p256_to_generic(&r->Z, z);
464 }
465 
467  const EC_RAW_POINT *p,
468  const EC_SCALAR *scalar) {
469  fiat_p256_felem p_pre_comp[17][3];
470  OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
471  // Precompute multiples.
472  fiat_p256_from_generic(p_pre_comp[1][0], &p->X);
473  fiat_p256_from_generic(p_pre_comp[1][1], &p->Y);
474  fiat_p256_from_generic(p_pre_comp[1][2], &p->Z);
475  for (size_t j = 2; j <= 16; ++j) {
476  if (j & 1) {
477  fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
478  p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
479  0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
480  p_pre_comp[j - 1][2]);
481  } else {
482  fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
483  p_pre_comp[j][2], p_pre_comp[j / 2][0],
484  p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
485  }
486  }
487 
488  // Set nq to the point at infinity.
489  fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];
490 
491  // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
492  int skip = 1; // Save two point operations in the first round.
493  for (size_t i = 255; i < 256; i--) {
494  // double
495  if (!skip) {
496  fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
497  }
498 
499  // do other additions every 5 doublings
500  if (i % 5 == 0) {
501  crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 4) << 5;
502  bits |= fiat_p256_get_bit(scalar->bytes, i + 3) << 4;
503  bits |= fiat_p256_get_bit(scalar->bytes, i + 2) << 3;
504  bits |= fiat_p256_get_bit(scalar->bytes, i + 1) << 2;
505  bits |= fiat_p256_get_bit(scalar->bytes, i) << 1;
506  bits |= fiat_p256_get_bit(scalar->bytes, i - 1);
507  crypto_word_t sign, digit;
508  ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
509 
510  // select the point to add or subtract, in constant time.
512  (const fiat_p256_felem(*)[3])p_pre_comp, tmp);
513  fiat_p256_opp(ftmp, tmp[1]); // (X, -Y, Z) is the negative point.
514  fiat_p256_cmovznz(tmp[1], (fiat_p256_limb_t)sign, tmp[1], ftmp);
515 
516  if (!skip) {
517  fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
518  0 /* mixed */, tmp[0], tmp[1], tmp[2]);
519  } else {
520  fiat_p256_copy(nq[0], tmp[0]);
521  fiat_p256_copy(nq[1], tmp[1]);
522  fiat_p256_copy(nq[2], tmp[2]);
523  skip = 0;
524  }
525  }
526  }
527 
528  fiat_p256_to_generic(&r->X, nq[0]);
529  fiat_p256_to_generic(&r->Y, nq[1]);
530  fiat_p256_to_generic(&r->Z, nq[2]);
531 }
532 
534  EC_RAW_POINT *r,
535  const EC_SCALAR *scalar) {
536  // Set nq to the point at infinity.
537  fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];
538 
539  int skip = 1; // Save two point operations in the first round.
540  for (size_t i = 31; i < 32; i--) {
541  if (!skip) {
542  fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
543  }
544 
545  // First, look 32 bits upwards.
546  crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 224) << 3;
547  bits |= fiat_p256_get_bit(scalar->bytes, i + 160) << 2;
548  bits |= fiat_p256_get_bit(scalar->bytes, i + 96) << 1;
549  bits |= fiat_p256_get_bit(scalar->bytes, i + 32);
550  // Select the point to add, in constant time.
553 
554  if (!skip) {
555  fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
556  1 /* mixed */, tmp[0], tmp[1], tmp[2]);
557  } else {
558  fiat_p256_copy(nq[0], tmp[0]);
559  fiat_p256_copy(nq[1], tmp[1]);
560  fiat_p256_copy(nq[2], tmp[2]);
561  skip = 0;
562  }
563 
564  // Second, look at the current position.
565  bits = fiat_p256_get_bit(scalar->bytes, i + 192) << 3;
566  bits |= fiat_p256_get_bit(scalar->bytes, i + 128) << 2;
567  bits |= fiat_p256_get_bit(scalar->bytes, i + 64) << 1;
569  // Select the point to add, in constant time.
572  fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
573  tmp[0], tmp[1], tmp[2]);
574  }
575 
576  fiat_p256_to_generic(&r->X, nq[0]);
577  fiat_p256_to_generic(&r->Y, nq[1]);
578  fiat_p256_to_generic(&r->Z, nq[2]);
579 }
580 
582  EC_RAW_POINT *r,
583  const EC_SCALAR *g_scalar,
584  const EC_RAW_POINT *p,
585  const EC_SCALAR *p_scalar) {
586 #define P256_WSIZE_PUBLIC 4
587  // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
588  fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3];
589  fiat_p256_from_generic(p_pre_comp[0][0], &p->X);
590  fiat_p256_from_generic(p_pre_comp[0][1], &p->Y);
591  fiat_p256_from_generic(p_pre_comp[0][2], &p->Z);
592  fiat_p256_felem p2[3];
593  fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0],
594  p_pre_comp[0][1], p_pre_comp[0][2]);
595  for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
596  fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
597  p_pre_comp[i - 1][0], p_pre_comp[i - 1][1],
598  p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1],
599  p2[2]);
600  }
601 
602  // Set up the coefficients for |p_scalar|.
603  int8_t p_wNAF[257];
604  ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);
605 
606  // Set |ret| to the point at infinity.
607  int skip = 1; // Save some point operations.
608  fiat_p256_felem ret[3] = {{0}, {0}, {0}};
609  for (int i = 256; i >= 0; i--) {
610  if (!skip) {
611  fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
612  }
613 
614  // For the |g_scalar|, we use the precomputed table without the
615  // constant-time lookup.
616  if (i <= 31) {
617  // First, look 32 bits upwards.
618  crypto_word_t bits = fiat_p256_get_bit(g_scalar->bytes, i + 224) << 3;
619  bits |= fiat_p256_get_bit(g_scalar->bytes, i + 160) << 2;
620  bits |= fiat_p256_get_bit(g_scalar->bytes, i + 96) << 1;
621  bits |= fiat_p256_get_bit(g_scalar->bytes, i + 32);
622  if (bits != 0) {
623  size_t index = (size_t)(bits - 1);
624  fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
625  1 /* mixed */, fiat_p256_g_pre_comp[1][index][0],
627  fiat_p256_one);
628  skip = 0;
629  }
630 
631  // Second, look at the current position.
632  bits = fiat_p256_get_bit(g_scalar->bytes, i + 192) << 3;
633  bits |= fiat_p256_get_bit(g_scalar->bytes, i + 128) << 2;
634  bits |= fiat_p256_get_bit(g_scalar->bytes, i + 64) << 1;
635  bits |= fiat_p256_get_bit(g_scalar->bytes, i);
636  if (bits != 0) {
637  size_t index = (size_t)(bits - 1);
638  fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
639  1 /* mixed */, fiat_p256_g_pre_comp[0][index][0],
641  fiat_p256_one);
642  skip = 0;
643  }
644  }
645 
646  int digit = p_wNAF[i];
647  if (digit != 0) {
648  assert(digit & 1);
649  size_t idx = (size_t)(digit < 0 ? (-digit) >> 1 : digit >> 1);
650  fiat_p256_felem *y = &p_pre_comp[idx][1], tmp;
651  if (digit < 0) {
652  fiat_p256_opp(tmp, p_pre_comp[idx][1]);
653  y = &tmp;
654  }
655  if (!skip) {
656  fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
657  0 /* not mixed */, p_pre_comp[idx][0], *y,
658  p_pre_comp[idx][2]);
659  } else {
660  fiat_p256_copy(ret[0], p_pre_comp[idx][0]);
661  fiat_p256_copy(ret[1], *y);
662  fiat_p256_copy(ret[2], p_pre_comp[idx][2]);
663  skip = 0;
664  }
665  }
666  }
667 
668  fiat_p256_to_generic(&r->X, ret[0]);
669  fiat_p256_to_generic(&r->Y, ret[1]);
670  fiat_p256_to_generic(&r->Z, ret[2]);
671 }
672 
674  const EC_RAW_POINT *p,
675  const EC_SCALAR *r) {
677  return 0;
678  }
679 
680  // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
681  // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
682  // not.
683  fiat_p256_felem Z2_mont;
684  fiat_p256_from_generic(Z2_mont, &p->Z);
685  fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont);
686 
687  fiat_p256_felem r_Z2;
688  fiat_p256_from_bytes(r_Z2, r->bytes); // r < order < p, so this is valid.
689  fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
690 
692  fiat_p256_from_generic(X, &p->X);
694 
695  if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
696  return 1;
697  }
698 
699  // During signing the x coefficient is reduced modulo the group order.
700  // Therefore there is a small possibility, less than 1/2^128, that group_order
701  // < p.x < P. in that case we need not only to compare against |r| but also to
702  // compare against r+group_order.
703  assert(group->field.width == group->order.width);
704  if (bn_less_than_words(r->words, group->field_minus_order.words,
705  group->field.width)) {
706  // We can ignore the carry because: r + group_order < p < 2^256.
707  EC_FELEM tmp;
708  bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
709  fiat_p256_from_generic(r_Z2, &tmp);
710  fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
711  if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
712  return 1;
713  }
714  }
715 
716  return 0;
717 }
718 
720  out->group_init = ec_GFp_mont_group_init;
721  out->group_finish = ec_GFp_mont_group_finish;
722  out->group_set_curve = ec_GFp_mont_group_set_curve;
723  out->point_get_affine_coordinates =
725  out->add = ec_GFp_nistp256_add;
726  out->dbl = ec_GFp_nistp256_dbl;
730  out->felem_mul = ec_GFp_mont_felem_mul;
731  out->felem_sqr = ec_GFp_mont_felem_sqr;
732  out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
733  out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
734  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
735  out->scalar_to_montgomery_inv_vartime =
737  out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
738 }
739 
740 #undef BORINGSSL_NISTP256_64BIT
FIAT_P256_NLIMBS
#define FIAT_P256_NLIMBS
Definition: p256.c:53
ec_GFp_nistp256_point_get_affine_coordinates
static int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out, EC_FELEM *y_out)
Definition: p256.c:407
EC_SCALAR::bytes
uint8_t bytes[EC_MAX_BYTES]
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:105
bn.h
p256_table.h
ec_GFp_nistp_recode_scalar_bits
#define ec_GFp_nistp_recode_scalar_bits
Definition: boringssl_prefix_symbols.h:3073
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
ec_method_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:463
OPENSSL_memcmp
static int OPENSSL_memcmp(const void *s1, const void *s2, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:811
X
#define X(c)
ec_GFp_simple_is_at_infinity
#define ec_GFp_simple_is_at_infinity
Definition: boringssl_prefix_symbols.h:3082
ec_GFp_mont_group_set_curve
#define ec_GFp_mont_group_set_curve
Definition: boringssl_prefix_symbols.h:3066
mkowners.skip
bool skip
Definition: mkowners.py:224
fiat_p256_cmovznz
static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS], fiat_p256_limb_t t, const fiat_p256_limb_t z[FIAT_P256_NLIMBS], const fiat_p256_limb_t nz[FIAT_P256_NLIMBS])
Definition: p256.c:75
fiat_p256_one
static const fiat_p256_felem fiat_p256_one
Definition: p256.c:56
fiat_p256_copy
static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS], const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])
Definition: p256.c:68
fiat_p256_get_bit
static crypto_word_t fiat_p256_get_bit(const uint8_t *in, int i)
Definition: p256.c:396
scalar
Definition: spake25519.c:317
y
const double y
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3611
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
fiat_p256_inv_square
static void fiat_p256_inv_square(fiat_p256_felem out, const fiat_p256_felem in)
Definition: p256.c:101
string.h
OPENSSL_ARRAY_SIZE
#define OPENSSL_ARRAY_SIZE(array)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:179
fiat_p256_from_generic
static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in)
Definition: p256.c:82
P256_WSIZE_PUBLIC
#define P256_WSIZE_PUBLIC
fiat_p256_limb_t
uint32_t fiat_p256_limb_t
Definition: p256.c:54
fiat_p256_opp
static void fiat_p256_opp(uint32_t out1[8], const uint32_t arg1[8])
Definition: p256_32.h:2311
fiat_p256_mul
static void fiat_p256_mul(uint32_t out1[8], const uint32_t arg1[8], const uint32_t arg2[8])
Definition: p256_32.h:128
grpc.beta._metadata.beta
def beta(metadata)
Definition: src/python/grpcio/grpc/beta/_metadata.py:39
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
xds_manager.p
p
Definition: xds_manager.py:60
z
Uncopyable z
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3612
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
ec_GFp_mont_felem_from_bytes
#define ec_GFp_mont_felem_from_bytes
Definition: boringssl_prefix_symbols.h:3060
ec_GFp_nistp256_cmp_x_coordinate
static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, const EC_SCALAR *r)
Definition: p256.c:673
OPENSSL_memset
static void * OPENSSL_memset(void *dst, int c, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:835
EC_RAW_POINT
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:260
constant_time_is_zero_w
static crypto_word_t constant_time_is_zero_w(crypto_word_t a)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:372
bn_add_words
#define bn_add_words
Definition: boringssl_prefix_symbols.h:2851
ec_GFp_nistp256_add
static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a, const EC_RAW_POINT *b)
Definition: p256.c:438
base.h
uint32_t
unsigned int uint32_t
Definition: stdint-msvc2008.h:80
ec_GFp_mont_group_finish
#define ec_GFp_mont_group_finish
Definition: boringssl_prefix_symbols.h:3064
in
const char * in
Definition: third_party/abseil-cpp/absl/strings/internal/str_format/parser_test.cc:391
ec_GFp_mont_felem_mul
#define ec_GFp_mont_felem_mul
Definition: boringssl_prefix_symbols.h:3061
setup.v
v
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:42
fiat_p256_sub
static void fiat_p256_sub(uint32_t out1[8], const uint32_t arg1[8], const uint32_t arg2[8])
Definition: p256_32.h:2237
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
bits
OPENSSL_EXPORT ASN1_BIT_STRING * bits
Definition: x509v3.h:482
err.h
ec_simple_scalar_inv0_montgomery
#define ec_simple_scalar_inv0_montgomery
Definition: boringssl_prefix_symbols.h:3141
ec_GFp_mont_felem_to_bytes
#define ec_GFp_mont_felem_to_bytes
Definition: boringssl_prefix_symbols.h:3063
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
ec_GFp_mont_felem_sqr
#define ec_GFp_mont_felem_sqr
Definition: boringssl_prefix_symbols.h:3062
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
EC_FELEM
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:195
setup.idx
idx
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:197
fiat_p256_to_bytes
static void fiat_p256_to_bytes(uint8_t out1[32], const uint32_t arg1[8])
Definition: p256_32.h:2979
fiat_p256_g_pre_comp
static const fiat_p256_felem fiat_p256_g_pre_comp[2][15][2]
Definition: p256_table.h:176
ec_GFp_nistp256_point_mul
static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *p, const EC_SCALAR *scalar)
Definition: p256.c:466
point
Definition: bloaty/third_party/zlib/examples/zran.c:67
fiat_p256_point_double
static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out, fiat_p256_felem z_out, const fiat_p256_felem x_in, const fiat_p256_felem y_in, const fiat_p256_felem z_in)
Definition: p256.c:192
fiat_p256_nonzero
static void fiat_p256_nonzero(uint32_t *out1, const uint32_t arg1[8])
Definition: p256_32.h:2923
fiat_p256_add
static void fiat_p256_add(uint32_t out1[8], const uint32_t arg1[8], const uint32_t arg2[8])
Definition: p256_32.h:2144
internal.h
upload.group
group
Definition: bloaty/third_party/googletest/googlemock/scripts/upload.py:397
fiat_p256_select_point_affine
static void fiat_p256_select_point_affine(const fiat_p256_limb_t idx, size_t size, const fiat_p256_felem pre_comp[][2], fiat_p256_felem out[3])
Definition: p256.c:369
ec_GFp_nistp256_point_mul_public
static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, const EC_SCALAR *p_scalar)
Definition: p256.c:581
bn_less_than_words
#define bn_less_than_words
Definition: boringssl_prefix_symbols.h:2865
ec_GFp_nistp256_point_mul_base
static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r, const EC_SCALAR *scalar)
Definition: p256.c:533
DEFINE_METHOD_FUNCTION
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method)
Definition: p256.c:719
fiat_p256_point_add
static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3, fiat_p256_felem z3, const fiat_p256_felem x1, const fiat_p256_felem y1, const fiat_p256_felem z1, const int mixed, const fiat_p256_felem x2, const fiat_p256_felem y2, const fiat_p256_felem z2)
Definition: p256.c:249
index
int index
Definition: bloaty/third_party/protobuf/php/ext/google/protobuf/protobuf.h:1184
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
ec_group_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:573
fix_build_deps.r
r
Definition: fix_build_deps.py:491
fiat_p256_to_generic
static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in)
Definition: p256.c:86
ec_simple_scalar_to_montgomery_inv_vartime
#define ec_simple_scalar_to_montgomery_inv_vartime
Definition: boringssl_prefix_symbols.h:3142
fiat_p256_from_bytes
static void fiat_p256_from_bytes(uint32_t out1[8], const uint8_t arg1[32])
Definition: p256_32.h:3090
ec_GFp_mont_group_init
#define ec_GFp_mont_group_init
Definition: boringssl_prefix_symbols.h:3065
scalar::bytes
uint8_t bytes[32]
Definition: spake25519.c:318
fiat_p256_selectznz
static void fiat_p256_selectznz(uint32_t out1[8], fiat_p256_uint1 arg1, const uint32_t arg2[8], const uint32_t arg3[8])
Definition: p256_32.h:2940
fiat_p256_select_point
static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size, const fiat_p256_felem pre_comp[][3], fiat_p256_felem out[3])
Definition: p256.c:383
EC_SCALAR
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:103
EC_R_POINT_AT_INFINITY
#define EC_R_POINT_AT_INFINITY
Definition: ec.h:426
mem.h
type_check.h
int8_t
signed char int8_t
Definition: stdint-msvc2008.h:75
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
EC_GFp_nistp256_method
const EC_METHOD * EC_GFp_nistp256_method(void)
fiat_p256_felem
uint32_t fiat_p256_felem[FIAT_P256_NLIMBS]
Definition: p256.c:55
size
voidpf void uLong size
Definition: bloaty/third_party/zlib/contrib/minizip/ioapi.h:136
ec_GFp_nistp256_dbl
static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a)
Definition: p256.c:454
ec.h
ec_compute_wNAF
#define ec_compute_wNAF
Definition: boringssl_prefix_symbols.h:3095
fiat_p256_square
static void fiat_p256_square(uint32_t out1[8], const uint32_t arg1[8])
Definition: p256_32.h:1135
OPENSSL_STATIC_ASSERT
#define OPENSSL_STATIC_ASSERT(cond, msg)
Definition: type_check.h:75
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
fiat_p256_nz
static fiat_p256_limb_t fiat_p256_nz(const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])
Definition: p256.c:61
fiat_p256_from_montgomery
static void fiat_p256_from_montgomery(uint32_t out1[8], const uint32_t arg1[8])
Definition: p256_32.h:2385


grpc
Author(s):
autogenerated on Fri May 16 2025 02:59:38