mul.c
Go to the documentation of this file.
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to. The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  * notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  * notice, this list of conditions and the following disclaimer in the
29  * documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  * must display the following acknowledgement:
32  * "This product includes cryptographic software written by
33  * Eric Young (eay@cryptsoft.com)"
34  * The word 'cryptographic' can be left out if the rouines from the library
35  * being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  * the apps directory (application code) you must include an acknowledgement:
38  * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed. i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <stdlib.h>
61 #include <string.h>
62 
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 #include <openssl/type_check.h>
66 
67 #include "internal.h"
68 #include "../../internal.h"
69 
70 
71 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
72 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
73 
74 
75 static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
76  size_t num, BN_ULONG *tmp) {
77  BN_ULONG borrow = bn_sub_words(tmp, a, b, num);
78  bn_sub_words(r, b, a, num);
79  bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
80 }
81 
82 static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
83  const BN_ULONG *b, size_t nb) {
84  if (na < nb) {
85  size_t itmp = na;
86  na = nb;
87  nb = itmp;
88  const BN_ULONG *ltmp = a;
89  a = b;
90  b = ltmp;
91  }
92  BN_ULONG *rr = &(r[na]);
93  if (nb == 0) {
94  OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
95  return;
96  }
97  rr[0] = bn_mul_words(r, a, na, b[0]);
98 
99  for (;;) {
100  if (--nb == 0) {
101  return;
102  }
103  rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
104  if (--nb == 0) {
105  return;
106  }
107  rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
108  if (--nb == 0) {
109  return;
110  }
111  rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
112  if (--nb == 0) {
113  return;
114  }
115  rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
116  rr += 4;
117  r += 4;
118  b += 4;
119  }
120 }
121 
122 // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
123 // one if the operation underflowed and zero otherwise. |cl| is the common
124 // length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
125 // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
126 // cl + abs(dl).
127 //
128 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
129 // is confusing.
130 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
131  const BN_ULONG *b, int cl, int dl) {
132  assert(cl >= 0);
133  BN_ULONG borrow = bn_sub_words(r, a, b, cl);
134  if (dl == 0) {
135  return borrow;
136  }
137 
138  r += cl;
139  a += cl;
140  b += cl;
141 
142  if (dl < 0) {
143  // |a| is shorter than |b|. Complete the subtraction as if the excess words
144  // in |a| were zeros.
145  dl = -dl;
146  for (int i = 0; i < dl; i++) {
147  r[i] = 0u - b[i] - borrow;
148  borrow |= r[i] != 0;
149  }
150  } else {
151  // |b| is shorter than |a|. Complete the subtraction as if the excess words
152  // in |b| were zeros.
153  for (int i = 0; i < dl; i++) {
154  // |r| and |a| may alias, so use a temporary.
155  BN_ULONG tmp = a[i];
156  r[i] = a[i] - borrow;
157  borrow = tmp < r[i];
158  }
159  }
160 
161  return borrow;
162 }
163 
164 // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
165 // and returning a mask of all ones if the result was negative and all zeros if
166 // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
167 // convention.
168 //
169 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
170 // is confusing.
171 static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
172  const BN_ULONG *b, int cl, int dl,
173  BN_ULONG *tmp) {
174  BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
175  bn_sub_part_words(r, b, a, cl, -dl);
176  int r_len = cl + (dl < 0 ? -dl : dl);
177  borrow = 0 - borrow;
178  bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
179  return borrow;
180 }
181 
182 int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
183  BN_CTX *ctx) {
184  int cl = a->width < b->width ? a->width : b->width;
185  int dl = a->width - b->width;
186  int r_len = a->width < b->width ? b->width : a->width;
187  BN_CTX_start(ctx);
188  BIGNUM *tmp = BN_CTX_get(ctx);
189  int ok = tmp != NULL &&
190  bn_wexpand(r, r_len) &&
191  bn_wexpand(tmp, r_len);
192  if (ok) {
193  bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
194  r->width = r_len;
195  }
196  BN_CTX_end(ctx);
197  return ok;
198 }
199 
200 // Karatsuba recursive multiplication algorithm
201 // (cf. Knuth, The Art of Computer Programming, Vol. 2)
202 
203 // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
204 // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
205 // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
206 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
207 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
208 //
209 // TODO(davidben): Simplify and |size_t| the calling convention around lengths
210 // here.
211 static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
212  int n2, int dna, int dnb, BN_ULONG *t) {
213  // |n2| is a power of two.
214  assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
215  // Check |dna| and |dnb| are in range.
216  assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
217  assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);
218 
219  // Only call bn_mul_comba 8 if n2 == 8 and the
220  // two arrays are complete [steve]
221  if (n2 == 8 && dna == 0 && dnb == 0) {
222  bn_mul_comba8(r, a, b);
223  return;
224  }
225 
226  // Else do normal multiply
227  if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
228  bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
229  if (dna + dnb < 0) {
230  OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
231  sizeof(BN_ULONG) * -(dna + dnb));
232  }
233  return;
234  }
235 
236  // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
237  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
238  // for recursive calls.
239  // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
240  // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
241  //
242  // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
243  //
244  // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
245  // |tna| and |tnb| are non-negative.
246  int n = n2 / 2, tna = n + dna, tnb = n + dnb;
247 
248  // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
249  // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
250  // themselves store the absolute value.
251  BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
252  neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
253 
254  // Compute:
255  // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
256  // r0,r1 = a0 * b0
257  // r2,r3 = a1 * b1
258  if (n == 4 && dna == 0 && dnb == 0) {
259  bn_mul_comba4(&t[n2], t, &t[n]);
260 
261  bn_mul_comba4(r, a, b);
262  bn_mul_comba4(&r[n2], &a[n], &b[n]);
263  } else if (n == 8 && dna == 0 && dnb == 0) {
264  bn_mul_comba8(&t[n2], t, &t[n]);
265 
266  bn_mul_comba8(r, a, b);
267  bn_mul_comba8(&r[n2], &a[n], &b[n]);
268  } else {
269  BN_ULONG *p = &t[n2 * 2];
270  bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
271  bn_mul_recursive(r, a, b, n, 0, 0, p);
272  bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
273  }
274 
275  // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
276  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
277 
278  // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
279  // The second term is stored as the absolute value, so we do this with a
280  // constant-time select.
281  BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
282  BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
283  bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
284  OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
285  "crypto_word_t is too small");
286  c = constant_time_select_w(neg, c_neg, c_pos);
287 
288  // We now have our three components. Add them together.
289  // r1,r2,c = r1,r2 + t2,t3,c
290  c += bn_add_words(&r[n], &r[n], &t[n2], n2);
291 
292  // Propagate the carry bit to the end.
293  for (int i = n + n2; i < n2 + n2; i++) {
294  BN_ULONG old = r[i];
295  r[i] = old + c;
296  c = r[i] < old;
297  }
298 
299  // The product should fit without carries.
300  assert(c == 0);
301 }
302 
303 // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
304 // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
305 // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
306 // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
307 // one.
308 //
309 // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
310 // and |b|.
311 static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
312  const BN_ULONG *b, int n, int tna, int tnb,
313  BN_ULONG *t) {
314  // |n| is a power of two.
315  assert(n != 0 && (n & (n - 1)) == 0);
316  // Check |tna| and |tnb| are in range.
317  assert(0 <= tna && tna < n);
318  assert(0 <= tnb && tnb < n);
319  assert(-1 <= tna - tnb && tna - tnb <= 1);
320 
321  int n2 = n * 2;
322  if (n < 8) {
323  bn_mul_normal(r, a, n + tna, b, n + tnb);
324  OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
325  return;
326  }
327 
328  // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
329  // and |b1| have size |tna| and |tnb|, respectively.
330  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
331  // for recursive calls.
332  // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
333  // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
334  //
335  // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
336 
337  // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
338  // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
339  // themselves store the absolute value.
340  BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
341  neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
342 
343  // Compute:
344  // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
345  // r0,r1 = a0 * b0
346  // r2,r3 = a1 * b1
347  if (n == 8) {
348  bn_mul_comba8(&t[n2], t, &t[n]);
349  bn_mul_comba8(r, a, b);
350 
351  bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
352  // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
353  OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
354  } else {
355  BN_ULONG *p = &t[n2 * 2];
356  bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
357  bn_mul_recursive(r, a, b, n, 0, 0, p);
358 
359  OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
360  if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
362  bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
363  } else {
364  int i = n;
365  for (;;) {
366  i /= 2;
367  if (i < tna || i < tnb) {
368  // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
369  // of each other, so if |tna| is larger and tna > i, then we know
370  // tnb >= i, and this call is valid.
371  bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
372  break;
373  }
374  if (i == tna || i == tnb) {
375  // If there is only a bottom half to the number, just do it. We know
376  // the larger of |tna - i| and |tnb - i| is zero. The other is zero or
377  // -1 by because of |tna| and |tnb| differ by at most one.
378  bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
379  break;
380  }
381 
382  // This loop will eventually terminate when |i| falls below
383  // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
384  // exceeds that.
385  }
386  }
387  }
388 
389  // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
390  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
391 
392  // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
393  // The second term is stored as the absolute value, so we do this with a
394  // constant-time select.
395  BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
396  BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
397  bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
398  OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
399  "crypto_word_t is too small");
400  c = constant_time_select_w(neg, c_neg, c_pos);
401 
402  // We now have our three components. Add them together.
403  // r1,r2,c = r1,r2 + t2,t3,c
404  c += bn_add_words(&r[n], &r[n], &t[n2], n2);
405 
406  // Propagate the carry bit to the end.
407  for (int i = n + n2; i < n2 + n2; i++) {
408  BN_ULONG old = r[i];
409  r[i] = old + c;
410  c = r[i] < old;
411  }
412 
413  // The product should fit without carries.
414  assert(c == 0);
415 }
416 
417 // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
418 // breaks |BIGNUM| invariants and may return a negative zero. This is handled by
419 // the callers.
420 static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
421  BN_CTX *ctx) {
422  int al = a->width;
423  int bl = b->width;
424  if (al == 0 || bl == 0) {
425  BN_zero(r);
426  return 1;
427  }
428 
429  int ret = 0;
430  BIGNUM *rr;
431  BN_CTX_start(ctx);
432  if (r == a || r == b) {
433  rr = BN_CTX_get(ctx);
434  if (rr == NULL) {
435  goto err;
436  }
437  } else {
438  rr = r;
439  }
440  rr->neg = a->neg ^ b->neg;
441 
442  int i = al - bl;
443  if (i == 0) {
444  if (al == 8) {
445  if (!bn_wexpand(rr, 16)) {
446  goto err;
447  }
448  rr->width = 16;
449  bn_mul_comba8(rr->d, a->d, b->d);
450  goto end;
451  }
452  }
453 
454  int top = al + bl;
455  static const int kMulNormalSize = 16;
456  if (al >= kMulNormalSize && bl >= kMulNormalSize) {
457  if (-1 <= i && i <= 1) {
458  // Find the largest power of two less than or equal to the larger length.
459  int j;
460  if (i >= 0) {
461  j = BN_num_bits_word((BN_ULONG)al);
462  } else {
463  j = BN_num_bits_word((BN_ULONG)bl);
464  }
465  j = 1 << (j - 1);
466  assert(j <= al || j <= bl);
467  BIGNUM *t = BN_CTX_get(ctx);
468  if (t == NULL) {
469  goto err;
470  }
471  if (al > j || bl > j) {
472  // We know |al| and |bl| are at most one from each other, so if al > j,
473  // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
474  //
475  // TODO(davidben): This codepath is almost unused in standard
476  // algorithms. Is this optimization necessary? See notes in
477  // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6
478  assert(al >= j && bl >= j);
479  if (!bn_wexpand(t, j * 8) ||
480  !bn_wexpand(rr, j * 4)) {
481  goto err;
482  }
483  bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
484  } else {
485  // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
486  // of al - j or bl - j is zero. The other, by the bound on |i| above, is
487  // zero or -1. Thus, we can use |bn_mul_recursive|.
488  if (!bn_wexpand(t, j * 4) ||
489  !bn_wexpand(rr, j * 2)) {
490  goto err;
491  }
492  bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
493  }
494  rr->width = top;
495  goto end;
496  }
497  }
498 
499  if (!bn_wexpand(rr, top)) {
500  goto err;
501  }
502  rr->width = top;
503  bn_mul_normal(rr->d, a->d, al, b->d, bl);
504 
505 end:
506  if (r != rr && !BN_copy(r, rr)) {
507  goto err;
508  }
509  ret = 1;
510 
511 err:
512  BN_CTX_end(ctx);
513  return ret;
514 }
515 
516 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
517  if (!bn_mul_impl(r, a, b, ctx)) {
518  return 0;
519  }
520 
521  // This additionally fixes any negative zeros created by |bn_mul_impl|.
523  return 1;
524 }
525 
526 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
527  // Prevent negative zeros.
528  if (a->neg || b->neg) {
530  return 0;
531  }
532 
533  return bn_mul_impl(r, a, b, ctx);
534 }
535 
536 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
537  const BN_ULONG *b, size_t num_b) {
538  if (num_r != num_a + num_b) {
539  abort();
540  }
541  // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
542  // hit that code.
543  if (num_a == 8 && num_b == 8) {
544  bn_mul_comba8(r, a, b);
545  } else {
546  bn_mul_normal(r, a, num_a, b, num_b);
547  }
548 }
549 
550 // tmp must have 2*n words
551 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
552  BN_ULONG *tmp) {
553  if (n == 0) {
554  return;
555  }
556 
557  size_t max = n * 2;
558  const BN_ULONG *ap = a;
559  BN_ULONG *rp = r;
560  rp[0] = rp[max - 1] = 0;
561  rp++;
562 
563  // Compute the contribution of a[i] * a[j] for all i < j.
564  if (n > 1) {
565  ap++;
566  rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
567  rp += 2;
568  }
569  if (n > 2) {
570  for (size_t i = n - 2; i > 0; i--) {
571  ap++;
572  rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
573  rp += 2;
574  }
575  }
576 
577  // The final result fits in |max| words, so none of the following operations
578  // will overflow.
579 
580  // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
581  bn_add_words(r, r, r, max);
582 
583  // Add in the contribution of a[i] * a[i] for all i.
584  bn_sqr_words(tmp, a, n);
585  bn_add_words(r, r, tmp, max);
586 }
587 
588 // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has
589 // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be
590 // a power of two.
591 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2,
592  BN_ULONG *t) {
593  // |n2| is a power of two.
594  assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
595 
596  if (n2 == 4) {
597  bn_sqr_comba4(r, a);
598  return;
599  }
600  if (n2 == 8) {
601  bn_sqr_comba8(r, a);
602  return;
603  }
604  if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
605  bn_sqr_normal(r, a, n2, t);
606  return;
607  }
608 
609  // Split |a| into a0,a1, each of size |n|.
610  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
611  // for recursive calls.
612  // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to
613  // r1,r2, and a1^2 to r2,r3.
614  size_t n = n2 / 2;
615  BN_ULONG *t_recursive = &t[n2 * 2];
616 
617  // t0 = |a0 - a1|.
618  bn_abs_sub_words(t, a, &a[n], n, &t[n]);
619  // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2
620  bn_sqr_recursive(&t[n2], t, n, t_recursive);
621 
622  // r0,r1 = a0^2
623  bn_sqr_recursive(r, a, n, t_recursive);
624 
625  // r2,r3 = a1^2
626  bn_sqr_recursive(&r[n2], &a[n], n, t_recursive);
627 
628  // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2
629  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
630  // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1
631  c -= bn_sub_words(&t[n2], t, &t[n2], n2);
632 
633  // We now have our three components. Add them together.
634  // r1,r2,c = r1,r2 + t2,t3,c
635  c += bn_add_words(&r[n], &r[n], &t[n2], n2);
636 
637  // Propagate the carry bit to the end.
638  for (size_t i = n + n2; i < n2 + n2; i++) {
639  BN_ULONG old = r[i];
640  r[i] = old + c;
641  c = r[i] < old;
642  }
643 
644  // The square should fit without carries.
645  assert(c == 0);
646 }
647 
648 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
649  if (!bn->width) {
650  return 1;
651  }
652 
653  if (w == 0) {
654  BN_zero(bn);
655  return 1;
656  }
657 
658  BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
659  if (ll) {
660  if (!bn_wexpand(bn, bn->width + 1)) {
661  return 0;
662  }
663  bn->d[bn->width++] = ll;
664  }
665 
666  return 1;
667 }
668 
670  int al = a->width;
671  if (al <= 0) {
672  r->width = 0;
673  r->neg = 0;
674  return 1;
675  }
676 
677  int ret = 0;
678  BN_CTX_start(ctx);
679  BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
680  BIGNUM *tmp = BN_CTX_get(ctx);
681  if (!rr || !tmp) {
682  goto err;
683  }
684 
685  int max = 2 * al; // Non-zero (from above)
686  if (!bn_wexpand(rr, max)) {
687  goto err;
688  }
689 
690  if (al == 4) {
691  bn_sqr_comba4(rr->d, a->d);
692  } else if (al == 8) {
693  bn_sqr_comba8(rr->d, a->d);
694  } else {
695  if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
696  BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
697  bn_sqr_normal(rr->d, a->d, al, t);
698  } else {
699  // If |al| is a power of two, we can use |bn_sqr_recursive|.
700  if (al != 0 && (al & (al - 1)) == 0) {
701  if (!bn_wexpand(tmp, al * 4)) {
702  goto err;
703  }
704  bn_sqr_recursive(rr->d, a->d, al, tmp->d);
705  } else {
706  if (!bn_wexpand(tmp, max)) {
707  goto err;
708  }
709  bn_sqr_normal(rr->d, a->d, al, tmp->d);
710  }
711  }
712  }
713 
714  rr->neg = 0;
715  rr->width = max;
716 
717  if (rr != r && !BN_copy(r, rr)) {
718  goto err;
719  }
720  ret = 1;
721 
722 err:
723  BN_CTX_end(ctx);
724  return ret;
725 }
726 
727 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
728  if (!bn_sqr_consttime(r, a, ctx)) {
729  return 0;
730  }
731 
733  return 1;
734 }
735 
736 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
737  if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
738  abort();
739  }
740  if (num_a == 4) {
741  bn_sqr_comba4(r, a);
742  } else if (num_a == 8) {
743  bn_sqr_comba8(r, a);
744  } else {
745  BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
746  bn_sqr_normal(r, a, num_a, tmp);
747  OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
748  }
749 }
bn_sub_part_words
static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
Definition: mul.c:130
bn.h
BN_sqr
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
Definition: mul.c:727
bn_select_words
#define bn_select_words
Definition: boringssl_prefix_symbols.h:2904
bn_set_minimal_width
#define bn_set_minimal_width
Definition: boringssl_prefix_symbols.h:2905
ctx
Definition: benchmark-async.c:30
OPENSSL_cleanse
#define OPENSSL_cleanse
Definition: boringssl_prefix_symbols.h:1864
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
bignum_st::width
int width
Definition: bn.h:975
string.h
bn_sqr_words
#define bn_sqr_words
Definition: boringssl_prefix_symbols.h:2913
error_ref_leak.err
err
Definition: error_ref_leak.py:35
BN_SQR_RECURSIVE_SIZE_NORMAL
#define BN_SQR_RECURSIVE_SIZE_NORMAL
Definition: mul.c:72
u
OPENSSL_EXPORT pem_password_cb void * u
Definition: pem.h:351
bn_sub_words
#define bn_sub_words
Definition: boringssl_prefix_symbols.h:2915
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
BN_R_NEGATIVE_NUMBER
#define BN_R_NEGATIVE_NUMBER
Definition: bn.h:1045
bignum_ctx
Definition: ctx.c:91
bn_sqr_recursive
static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2, BN_ULONG *t)
Definition: mul.c:591
BN_CTX_get
#define BN_CTX_get
Definition: boringssl_prefix_symbols.h:884
xds_manager.p
p
Definition: xds_manager.py:60
BN_mul_word
int BN_mul_word(BIGNUM *bn, BN_ULONG w)
Definition: mul.c:648
bn_wexpand
#define bn_wexpand
Definition: boringssl_prefix_symbols.h:2919
OPENSSL_memset
static void * OPENSSL_memset(void *dst, int c, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:835
bn_add_words
#define bn_add_words
Definition: boringssl_prefix_symbols.h:2851
bn_sqr_comba8
#define bn_sqr_comba8
Definition: boringssl_prefix_symbols.h:2910
c
void c(T a)
Definition: miscompile_with_no_unique_address_test.cc:40
end
char * end
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1008
bn_sqr_comba4
#define bn_sqr_comba4
Definition: boringssl_prefix_symbols.h:2909
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
bn_mul_consttime
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: mul.c:526
err.h
bn_mul_impl
static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: mul.c:420
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
bn_abs_sub_part_words
static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl, BN_ULONG *tmp)
Definition: mul.c:171
bn_abs_sub_words
static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, size_t num, BN_ULONG *tmp)
Definition: mul.c:75
BN_copy
#define BN_copy
Definition: boringssl_prefix_symbols.h:914
bignum_st::neg
int neg
Definition: bn.h:979
bn_sqr_consttime
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
Definition: mul.c:669
BN_zero
#define BN_zero
Definition: boringssl_prefix_symbols.h:1004
bn_mul_part_recursive
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t)
Definition: mul.c:311
BN_MUL_RECURSIVE_SIZE_NORMAL
#define BN_MUL_RECURSIVE_SIZE_NORMAL
Definition: mul.c:71
bn_mul_words
#define bn_mul_words
Definition: boringssl_prefix_symbols.h:2891
BN_CTX_start
#define BN_CTX_start
Definition: boringssl_prefix_symbols.h:886
bignum_st
Definition: bn.h:957
BN_mul
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: mul.c:516
internal.h
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
fix_build_deps.r
r
Definition: fix_build_deps.py:491
bignum_st::d
BN_ULONG * d
Definition: bn.h:960
xds_manager.num
num
Definition: xds_manager.py:56
bn_mul_comba8
#define bn_mul_comba8
Definition: boringssl_prefix_symbols.h:2886
ok
bool ok
Definition: async_end2end_test.cc:197
bn_sqr_normal
static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n, BN_ULONG *tmp)
Definition: mul.c:551
constant_time_select_w
static crypto_word_t constant_time_select_w(crypto_word_t mask, crypto_word_t a, crypto_word_t b)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:420
bn_mul_recursive
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t)
Definition: mul.c:211
BN_SMALL_MAX_WORDS
#define BN_SMALL_MAX_WORDS
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/bn/internal.h:649
BN_CTX_end
#define BN_CTX_end
Definition: boringssl_prefix_symbols.h:882
mem.h
bn_mul_comba4
#define bn_mul_comba4
Definition: boringssl_prefix_symbols.h:2885
bn_mul_add_words
#define bn_mul_add_words
Definition: boringssl_prefix_symbols.h:2884
type_check.h
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
BN_num_bits_word
#define BN_num_bits_word
Definition: boringssl_prefix_symbols.h:975
bn_sqr_small
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a)
Definition: mul.c:736
bn_mul_normal
static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na, const BN_ULONG *b, size_t nb)
Definition: mul.c:82
binary_size.old
string old
Definition: binary_size.py:128
top
static upb_pb_encoder_segment * top(upb_pb_encoder *e)
Definition: bloaty/third_party/protobuf/php/ext/google/protobuf/upb.c:7624
bn_mul_small
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, const BN_ULONG *b, size_t num_b)
Definition: mul.c:536
bn_abs_sub_consttime
int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: mul.c:182
OPENSSL_STATIC_ASSERT
#define OPENSSL_STATIC_ASSERT(cond, msg)
Definition: type_check.h:75
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230


grpc
Author(s):
autogenerated on Thu Mar 13 2025 03:00:41