gcd.c
Go to the documentation of this file.
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to. The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  * notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  * notice, this list of conditions and the following disclaimer in the
29  * documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  * must display the following acknowledgement:
32  * "This product includes cryptographic software written by
33  * Eric Young (eay@cryptsoft.com)"
34  * The word 'cryptographic' can be left out if the rouines from the library
35  * being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  * the apps directory (application code) you must include an acknowledgement:
38  * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed. i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  * notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  * notice, this list of conditions and the following disclaimer in
69  * the documentation and/or other materials provided with the
70  * distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  * software must display the following acknowledgment:
74  * "This product includes software developed by the OpenSSL Project
75  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  * endorse or promote products derived from this software without
79  * prior written permission. For written permission, please contact
80  * openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  * nor may "OpenSSL" appear in their names without prior written
84  * permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  * acknowledgment:
88  * "This product includes software developed by the OpenSSL Project
89  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com). This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <openssl/bn.h>
110 
111 #include <openssl/err.h>
112 
113 #include "internal.h"
114 
115 
116 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
117  const BIGNUM *n, BN_CTX *ctx) {
118  *out_no_inverse = 0;
119 
120  if (!BN_is_odd(n)) {
122  return 0;
123  }
124 
125  if (BN_is_negative(a) || BN_cmp(a, n) >= 0) {
127  return 0;
128  }
129 
130  BIGNUM *A, *B, *X, *Y;
131  int ret = 0;
132  int sign;
133 
134  BN_CTX_start(ctx);
135  A = BN_CTX_get(ctx);
136  B = BN_CTX_get(ctx);
137  X = BN_CTX_get(ctx);
138  Y = BN_CTX_get(ctx);
139  if (Y == NULL) {
140  goto err;
141  }
142 
143  BIGNUM *R = out;
144 
145  BN_zero(Y);
146  if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
147  goto err;
148  }
149  A->neg = 0;
150  sign = -1;
151  // From B = a mod |n|, A = |n| it follows that
152  //
153  // 0 <= B < A,
154  // -sign*X*a == B (mod |n|),
155  // sign*Y*a == A (mod |n|).
156 
157  // Binary inversion algorithm; requires odd modulus. This is faster than the
158  // general algorithm if the modulus is sufficiently small (about 400 .. 500
159  // bits on 32-bit systems, but much more on 64-bit systems)
160  int shift;
161 
162  while (!BN_is_zero(B)) {
163  // 0 < B < |n|,
164  // 0 < A <= |n|,
165  // (1) -sign*X*a == B (mod |n|),
166  // (2) sign*Y*a == A (mod |n|)
167 
168  // Now divide B by the maximum possible power of two in the integers,
169  // and divide X by the same value mod |n|.
170  // When we're done, (1) still holds.
171  shift = 0;
172  while (!BN_is_bit_set(B, shift)) {
173  // note that 0 < B
174  shift++;
175 
176  if (BN_is_odd(X)) {
177  if (!BN_uadd(X, X, n)) {
178  goto err;
179  }
180  }
181  // now X is even, so we can easily divide it by two
182  if (!BN_rshift1(X, X)) {
183  goto err;
184  }
185  }
186  if (shift > 0) {
187  if (!BN_rshift(B, B, shift)) {
188  goto err;
189  }
190  }
191 
192  // Same for A and Y. Afterwards, (2) still holds.
193  shift = 0;
194  while (!BN_is_bit_set(A, shift)) {
195  // note that 0 < A
196  shift++;
197 
198  if (BN_is_odd(Y)) {
199  if (!BN_uadd(Y, Y, n)) {
200  goto err;
201  }
202  }
203  // now Y is even
204  if (!BN_rshift1(Y, Y)) {
205  goto err;
206  }
207  }
208  if (shift > 0) {
209  if (!BN_rshift(A, A, shift)) {
210  goto err;
211  }
212  }
213 
214  // We still have (1) and (2).
215  // Both A and B are odd.
216  // The following computations ensure that
217  //
218  // 0 <= B < |n|,
219  // 0 < A < |n|,
220  // (1) -sign*X*a == B (mod |n|),
221  // (2) sign*Y*a == A (mod |n|),
222  //
223  // and that either A or B is even in the next iteration.
224  if (BN_ucmp(B, A) >= 0) {
225  // -sign*(X + Y)*a == B - A (mod |n|)
226  if (!BN_uadd(X, X, Y)) {
227  goto err;
228  }
229  // NB: we could use BN_mod_add_quick(X, X, Y, n), but that
230  // actually makes the algorithm slower
231  if (!BN_usub(B, B, A)) {
232  goto err;
233  }
234  } else {
235  // sign*(X + Y)*a == A - B (mod |n|)
236  if (!BN_uadd(Y, Y, X)) {
237  goto err;
238  }
239  // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
240  if (!BN_usub(A, A, B)) {
241  goto err;
242  }
243  }
244  }
245 
246  if (!BN_is_one(A)) {
247  *out_no_inverse = 1;
249  goto err;
250  }
251 
252  // The while loop (Euclid's algorithm) ends when
253  // A == gcd(a,n);
254  // we have
255  // sign*Y*a == A (mod |n|),
256  // where Y is non-negative.
257 
258  if (sign < 0) {
259  if (!BN_sub(Y, n, Y)) {
260  goto err;
261  }
262  }
263  // Now Y*a == A (mod |n|).
264 
265  // Y*a == 1 (mod |n|)
266  if (!Y->neg && BN_ucmp(Y, n) < 0) {
267  if (!BN_copy(R, Y)) {
268  goto err;
269  }
270  } else {
271  if (!BN_nnmod(R, Y, n, ctx)) {
272  goto err;
273  }
274  }
275 
276  ret = 1;
277 
278 err:
279  BN_CTX_end(ctx);
280  return ret;
281 }
282 
284  BN_CTX *ctx) {
285  BIGNUM *new_out = NULL;
286  if (out == NULL) {
287  new_out = BN_new();
288  if (new_out == NULL) {
290  return NULL;
291  }
292  out = new_out;
293  }
294 
295  int ok = 0;
296  BIGNUM *a_reduced = NULL;
297  if (a->neg || BN_ucmp(a, n) >= 0) {
298  a_reduced = BN_dup(a);
299  if (a_reduced == NULL) {
300  goto err;
301  }
302  if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) {
303  goto err;
304  }
305  a = a_reduced;
306  }
307 
308  int no_inverse;
309  if (!BN_is_odd(n)) {
310  if (!bn_mod_inverse_consttime(out, &no_inverse, a, n, ctx)) {
311  goto err;
312  }
313  } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) {
314  goto err;
315  }
316 
317  ok = 1;
318 
319 err:
320  if (!ok) {
321  BN_free(new_out);
322  out = NULL;
323  }
324  BN_free(a_reduced);
325  return out;
326 }
327 
328 int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
329  const BN_MONT_CTX *mont, BN_CTX *ctx) {
330  *out_no_inverse = 0;
331 
332  if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) {
334  return 0;
335  }
336 
337  int ret = 0;
338  BIGNUM blinding_factor;
339  BN_init(&blinding_factor);
340 
341  if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) ||
342  !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) ||
343  !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) ||
344  !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) {
346  goto err;
347  }
348 
349  ret = 1;
350 
351 err:
352  BN_free(&blinding_factor);
353  return ret;
354 }
355 
357  BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
358  BN_CTX_start(ctx);
359  BIGNUM *p_minus_2 = BN_CTX_get(ctx);
360  int ok = p_minus_2 != NULL &&
361  BN_copy(p_minus_2, p) &&
362  BN_sub_word(p_minus_2, 2) &&
363  BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p);
364  BN_CTX_end(ctx);
365  return ok;
366 }
367 
369  BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
370  BN_CTX_start(ctx);
371  BIGNUM *p_minus_2 = BN_CTX_get(ctx);
372  int ok = p_minus_2 != NULL &&
373  BN_copy(p_minus_2, p) &&
374  BN_sub_word(p_minus_2, 2) &&
375  BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p);
376  BN_CTX_end(ctx);
377  return ok;
378 }
bn.h
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
BN_rshift1
#define BN_rshift1
Definition: boringssl_prefix_symbols.h:988
BN_R_CALLED_WITH_EVEN_MODULUS
#define BN_R_CALLED_WITH_EVEN_MODULUS
Definition: bn.h:1040
X
#define X(c)
ctx
Definition: benchmark-async.c:30
BN_dup
#define BN_dup
Definition: boringssl_prefix_symbols.h:919
BN_is_bit_set
#define BN_is_bit_set
Definition: boringssl_prefix_symbols.h:932
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
error_ref_leak.err
err
Definition: error_ref_leak.py:35
bn_mont_ctx_st
Definition: bn.h:984
BN_free
#define BN_free
Definition: boringssl_prefix_symbols.h:923
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
bignum_ctx
Definition: ctx.c:91
BN_CTX_get
#define BN_CTX_get
Definition: boringssl_prefix_symbols.h:884
xds_manager.p
p
Definition: xds_manager.py:60
BN_sub
#define BN_sub
Definition: boringssl_prefix_symbols.h:995
BN_one
#define BN_one
Definition: boringssl_prefix_symbols.h:977
bn_mod_inverse_prime
int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx, const BN_MONT_CTX *mont_p)
Definition: gcd.c:356
BN_R_INPUT_NOT_REDUCED
#define BN_R_INPUT_NOT_REDUCED
Definition: bn.h:1043
BN_mod_exp_mont
#define BN_mod_exp_mont
Definition: boringssl_prefix_symbols.h:950
BN_sub_word
#define BN_sub_word
Definition: boringssl_prefix_symbols.h:996
err.h
A
#define A(T)
BN_is_odd
#define BN_is_odd
Definition: boringssl_prefix_symbols.h:934
ERR_R_BN_LIB
#define ERR_R_BN_LIB
Definition: err.h:331
bn_mod_inverse_consttime
#define bn_mod_inverse_consttime
Definition: boringssl_prefix_symbols.h:2874
BN_ucmp
#define BN_ucmp
Definition: boringssl_prefix_symbols.h:1001
BN_is_zero
#define BN_is_zero
Definition: boringssl_prefix_symbols.h:940
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
bn_mont_ctx_st::N
BIGNUM N
Definition: bn.h:990
bn_mod_inverse_secret_prime
int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx, const BN_MONT_CTX *mont_p)
Definition: gcd.c:368
BN_copy
#define BN_copy
Definition: boringssl_prefix_symbols.h:914
bignum_st::neg
int neg
Definition: bn.h:979
BN_mod_inverse_odd
int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
Definition: gcd.c:116
BN_zero
#define BN_zero
Definition: boringssl_prefix_symbols.h:1004
BN_mod_inverse
BIGNUM * BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
Definition: gcd.c:283
BN_CTX_start
#define BN_CTX_start
Definition: boringssl_prefix_symbols.h:886
BN_uadd
#define BN_uadd
Definition: boringssl_prefix_symbols.h:1000
bignum_st
Definition: bn.h:957
BN_is_one
#define BN_is_one
Definition: boringssl_prefix_symbols.h:935
internal.h
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
BN_cmp
#define BN_cmp
Definition: boringssl_prefix_symbols.h:912
BN_mod_exp_mont_consttime
#define BN_mod_exp_mont_consttime
Definition: boringssl_prefix_symbols.h:951
BN_usub
#define BN_usub
Definition: boringssl_prefix_symbols.h:1002
A
Definition: miscompile_with_no_unique_address_test.cc:23
BN_rand_range_ex
#define BN_rand_range_ex
Definition: boringssl_prefix_symbols.h:986
ok
bool ok
Definition: async_end2end_test.cc:197
BN_init
#define BN_init
Definition: boringssl_prefix_symbols.h:931
BN_is_negative
#define BN_is_negative
Definition: boringssl_prefix_symbols.h:933
BN_mod_inverse_blinded
int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BN_MONT_CTX *mont, BN_CTX *ctx)
Definition: gcd.c:328
BN_nnmod
#define BN_nnmod
Definition: boringssl_prefix_symbols.h:972
BN_CTX_end
#define BN_CTX_end
Definition: boringssl_prefix_symbols.h:882
BN_R_NO_INVERSE
#define BN_R_NO_INVERSE
Definition: bn.h:1048
BN_mod_mul_montgomery
#define BN_mod_mul_montgomery
Definition: boringssl_prefix_symbols.h:961
BN_rshift
#define BN_rshift
Definition: boringssl_prefix_symbols.h:987
BN_new
#define BN_new
Definition: boringssl_prefix_symbols.h:971
ERR_R_MALLOC_FAILURE
#define ERR_R_MALLOC_FAILURE
Definition: err.h:371


grpc
Author(s):
autogenerated on Thu Mar 13 2025 02:59:23