ec_montgomery.c
Go to the documentation of this file.
1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in
14  * the documentation and/or other materials provided with the
15  * distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  * software must display the following acknowledgment:
19  * "This product includes software developed by the OpenSSL Project
20  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  * endorse or promote products derived from this software without
24  * prior written permission. For written permission, please contact
25  * openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  * nor may "OpenSSL" appear in their names without prior written
29  * permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  * acknowledgment:
33  * "This product includes software developed by the OpenSSL Project
34  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com). This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73 
74 #include "../bn/internal.h"
75 #include "../delocate.h"
76 #include "internal.h"
77 
78 
80  int ok;
81 
83  group->mont = NULL;
84  return ok;
85 }
86 
88  BN_MONT_CTX_free(group->mont);
89  group->mont = NULL;
91 }
92 
94  const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
95  BN_MONT_CTX_free(group->mont);
97  if (group->mont == NULL) {
99  return 0;
100  }
101 
103  BN_MONT_CTX_free(group->mont);
104  group->mont = NULL;
105  return 0;
106  }
107 
108  return 1;
109 }
110 
112  EC_FELEM *out, const EC_FELEM *in) {
113  bn_to_montgomery_small(out->words, in->words, group->field.width,
114  group->mont);
115 }
116 
118  EC_FELEM *out,
119  const EC_FELEM *in) {
120  bn_from_montgomery_small(out->words, group->field.width, in->words,
121  group->field.width, group->mont);
122 }
123 
125  const EC_FELEM *a) {
126  bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.width,
127  group->mont);
128 }
129 
131  const EC_FELEM *a, const EC_FELEM *b) {
132  bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width,
133  group->mont);
134 }
135 
137  const EC_FELEM *a) {
138  bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width,
139  group->mont);
140 }
141 
143  size_t *out_len, const EC_FELEM *in) {
144  EC_FELEM tmp;
147 }
148 
150  const uint8_t *in, size_t len) {
152  return 0;
153  }
154 
156  return 1;
157 }
158 
160  const BN_ULONG *words, size_t num) {
161  // Convert "from" Montgomery form so the value is reduced mod p.
162  bn_from_montgomery_small(out->words, group->field.width, words, num,
163  group->mont);
164  // Convert "to" Montgomery form to remove the R^-1 factor added.
166  // Convert to Montgomery form to match this implementation's representation.
168 }
169 
171  const EC_FELEM *a, const BN_ULONG *exp,
172  size_t num_exp) {
173  bn_mod_exp_mont_small(out->words, a->words, group->field.width, exp, num_exp,
174  group->mont);
175 }
176 
178  const EC_RAW_POINT *point,
179  EC_FELEM *x, EC_FELEM *y) {
182  return 0;
183  }
184 
185  // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above
186  // ensures |point->Z| is non-zero, so the inverse always exists.
187  EC_FELEM z1, z2;
189  ec_GFp_mont_felem_sqr(group, &z1, &z2);
190 
191  if (x != NULL) {
192  ec_GFp_mont_felem_mul(group, x, &point->X, &z1);
193  }
194 
195  if (y != NULL) {
196  ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
197  ec_GFp_mont_felem_mul(group, y, &point->Y, &z1);
198  }
199 
200  return 1;
201 }
202 
204  EC_AFFINE *out,
205  const EC_RAW_POINT *in,
206  size_t num) {
207  if (num == 0) {
208  return 1;
209  }
210 
211  // Compute prefix products of all Zs. Use |out[i].X| as scratch space
212  // to store these values.
213  out[0].X = in[0].Z;
214  for (size_t i = 1; i < num; i++) {
215  ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z);
216  }
217 
218  // Some input was infinity iff the product of all Zs is zero.
219  if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) {
221  return 0;
222  }
223 
224  // Invert the product of all Zs.
225  EC_FELEM zinvprod;
226  ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X);
227  for (size_t i = num - 1; i < num; i--) {
228  // Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1.
229  // Recover Zi^-1 by multiplying by the previous product.
230  EC_FELEM zinv, zinv2;
231  if (i == 0) {
232  zinv = zinvprod;
233  } else {
234  ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X);
235  // Maintain the loop invariant for the next iteration.
236  ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z);
237  }
238 
239  // Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3.
240  ec_GFp_mont_felem_sqr(group, &zinv2, &zinv);
241  ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2);
242  ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2);
243  ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv);
244  }
245 
246  return 1;
247 }
248 
250  const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
251  if (a == b) {
253  return;
254  }
255 
256  // The method is taken from:
257  // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
258  //
259  // Coq transcription and correctness proof:
260  // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
261  // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
262  EC_FELEM x_out, y_out, z_out;
263  BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
264  BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
265 
266  // z1z1 = z1z1 = z1**2
267  EC_FELEM z1z1;
268  ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z);
269 
270  // z2z2 = z2**2
271  EC_FELEM z2z2;
272  ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z);
273 
274  // u1 = x1*z2z2
275  EC_FELEM u1;
276  ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2);
277 
278  // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
279  EC_FELEM two_z1z2;
280  ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
281  ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2);
282  ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
283  ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
284 
285  // s1 = y1 * z2**3
286  EC_FELEM s1;
287  ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2);
288  ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y);
289 
290  // u2 = x2*z1z1
291  EC_FELEM u2;
292  ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1);
293 
294  // h = u2 - u1
295  EC_FELEM h;
296  ec_felem_sub(group, &h, &u2, &u1);
297 
298  BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
299 
300  // z_out = two_z1z2 * h
301  ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2);
302 
303  // z1z1z1 = z1 * z1z1
304  EC_FELEM z1z1z1;
305  ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1);
306 
307  // s2 = y2 * z1**3
308  EC_FELEM s2;
309  ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1);
310 
311  // r = (s2 - s1)*2
312  EC_FELEM r;
313  ec_felem_sub(group, &r, &s2, &s1);
314  ec_felem_add(group, &r, &r, &r);
315 
316  BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
317 
318  // This case will never occur in the constant-time |ec_GFp_mont_mul|.
319  BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz;
320  if (is_nontrivial_double) {
322  return;
323  }
324 
325  // I = (2h)**2
326  EC_FELEM i;
327  ec_felem_add(group, &i, &h, &h);
329 
330  // J = h * I
331  EC_FELEM j;
332  ec_GFp_mont_felem_mul(group, &j, &h, &i);
333 
334  // V = U1 * I
335  EC_FELEM v;
336  ec_GFp_mont_felem_mul(group, &v, &u1, &i);
337 
338  // x_out = r**2 - J - 2V
339  ec_GFp_mont_felem_sqr(group, &x_out, &r);
340  ec_felem_sub(group, &x_out, &x_out, &j);
341  ec_felem_sub(group, &x_out, &x_out, &v);
342  ec_felem_sub(group, &x_out, &x_out, &v);
343 
344  // y_out = r(V-x_out) - 2 * s1 * J
345  ec_felem_sub(group, &y_out, &v, &x_out);
346  ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r);
347  EC_FELEM s1j;
348  ec_GFp_mont_felem_mul(group, &s1j, &s1, &j);
349  ec_felem_sub(group, &y_out, &y_out, &s1j);
350  ec_felem_sub(group, &y_out, &y_out, &s1j);
351 
352  ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
353  ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
354  ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
355  ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
356  ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
357  ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
358 }
359 
361  const EC_RAW_POINT *a) {
362  if (group->a_is_minus3) {
363  // The method is taken from:
364  // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
365  //
366  // Coq transcription and correctness proof:
367  // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
368  // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
369  EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
370  // delta = z^2
371  ec_GFp_mont_felem_sqr(group, &delta, &a->Z);
372  // gamma = y^2
373  ec_GFp_mont_felem_sqr(group, &gamma, &a->Y);
374  // beta = x*gamma
375  ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma);
376 
377  // alpha = 3*(x-delta)*(x+delta)
378  ec_felem_sub(group, &ftmp, &a->X, &delta);
379  ec_felem_add(group, &ftmp2, &a->X, &delta);
380 
381  ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
382  ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
383  ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2);
384 
385  // x' = alpha^2 - 8*beta
386  ec_GFp_mont_felem_sqr(group, &r->X, &alpha);
387  ec_felem_add(group, &fourbeta, &beta, &beta);
388  ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
389  ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
390  ec_felem_sub(group, &r->X, &r->X, &tmptmp);
391 
392  // z' = (y + z)^2 - gamma - delta
393  ec_felem_add(group, &delta, &gamma, &delta);
394  ec_felem_add(group, &ftmp, &a->Y, &a->Z);
395  ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp);
396  ec_felem_sub(group, &r->Z, &r->Z, &delta);
397 
398  // y' = alpha*(4*beta - x') - 8*gamma^2
399  ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
400  ec_felem_add(group, &gamma, &gamma, &gamma);
401  ec_GFp_mont_felem_sqr(group, &gamma, &gamma);
402  ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y);
403  ec_felem_add(group, &gamma, &gamma, &gamma);
404  ec_felem_sub(group, &r->Y, &r->Y, &gamma);
405  } else {
406  // The method is taken from:
407  // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
408  //
409  // Coq transcription and correctness proof:
410  // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
411  // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
412  EC_FELEM xx, yy, yyyy, zz;
413  ec_GFp_mont_felem_sqr(group, &xx, &a->X);
414  ec_GFp_mont_felem_sqr(group, &yy, &a->Y);
415  ec_GFp_mont_felem_sqr(group, &yyyy, &yy);
416  ec_GFp_mont_felem_sqr(group, &zz, &a->Z);
417 
418  // s = 2*((x_in + yy)^2 - xx - yyyy)
419  EC_FELEM s;
420  ec_felem_add(group, &s, &a->X, &yy);
421  ec_GFp_mont_felem_sqr(group, &s, &s);
422  ec_felem_sub(group, &s, &s, &xx);
423  ec_felem_sub(group, &s, &s, &yyyy);
424  ec_felem_add(group, &s, &s, &s);
425 
426  // m = 3*xx + a*zz^2
427  EC_FELEM m;
428  ec_GFp_mont_felem_sqr(group, &m, &zz);
429  ec_GFp_mont_felem_mul(group, &m, &group->a, &m);
430  ec_felem_add(group, &m, &m, &xx);
431  ec_felem_add(group, &m, &m, &xx);
432  ec_felem_add(group, &m, &m, &xx);
433 
434  // x_out = m^2 - 2*s
435  ec_GFp_mont_felem_sqr(group, &r->X, &m);
436  ec_felem_sub(group, &r->X, &r->X, &s);
437  ec_felem_sub(group, &r->X, &r->X, &s);
438 
439  // z_out = (y_in + z_in)^2 - yy - zz
440  ec_felem_add(group, &r->Z, &a->Y, &a->Z);
441  ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z);
442  ec_felem_sub(group, &r->Z, &r->Z, &yy);
443  ec_felem_sub(group, &r->Z, &r->Z, &zz);
444 
445  // y_out = m*(s-x_out) - 8*yyyy
446  ec_felem_add(group, &yyyy, &yyyy, &yyyy);
447  ec_felem_add(group, &yyyy, &yyyy, &yyyy);
448  ec_felem_add(group, &yyyy, &yyyy, &yyyy);
449  ec_felem_sub(group, &r->Y, &s, &r->X);
450  ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m);
451  ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
452  }
453 }
454 
456  const EC_RAW_POINT *p,
457  const EC_SCALAR *r) {
458  if (!group->field_greater_than_order ||
459  group->field.width != group->order.width) {
460  // Do not bother optimizing this case. p > order in all commonly-used
461  // curves.
463  }
464 
466  return 0;
467  }
468 
469  // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
470  // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
471  // not.
472  EC_FELEM r_Z2, Z2_mont, X;
473  ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z);
474  // r < order < p, so this is valid.
475  OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG));
476  ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
478 
479  if (ec_felem_equal(group, &r_Z2, &X)) {
480  return 1;
481  }
482 
483  // During signing the x coefficient is reduced modulo the group order.
484  // Therefore there is a small possibility, less than 1/2^128, that group_order
485  // < p.x < P. in that case we need not only to compare against |r| but also to
486  // compare against r+group_order.
487  if (bn_less_than_words(r->words, group->field_minus_order.words,
488  group->field.width)) {
489  // We can ignore the carry because: r + group_order < p < 2^256.
490  bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width);
491  ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
492  if (ec_felem_equal(group, &r_Z2, &X)) {
493  return 1;
494  }
495  }
496 
497  return 0;
498 }
499 
501  out->group_init = ec_GFp_mont_group_init;
502  out->group_finish = ec_GFp_mont_group_finish;
503  out->group_set_curve = ec_GFp_mont_group_set_curve;
504  out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
505  out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch;
506  out->add = ec_GFp_mont_add;
507  out->dbl = ec_GFp_mont_dbl;
508  out->mul = ec_GFp_mont_mul;
509  out->mul_base = ec_GFp_mont_mul_base;
510  out->mul_batch = ec_GFp_mont_mul_batch;
511  out->mul_public_batch = ec_GFp_mont_mul_public_batch;
512  out->init_precomp = ec_GFp_mont_init_precomp;
513  out->mul_precomp = ec_GFp_mont_mul_precomp;
514  out->felem_mul = ec_GFp_mont_felem_mul;
515  out->felem_sqr = ec_GFp_mont_felem_sqr;
516  out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
517  out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
518  out->felem_reduce = ec_GFp_mont_felem_reduce;
519  out->felem_exp = ec_GFp_mont_felem_exp;
520  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
521  out->scalar_to_montgomery_inv_vartime =
523  out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate;
524 }
DEFINE_METHOD_FUNCTION
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method)
Definition: ec_montgomery.c:500
bn.h
ec_GFp_mont_felem_to_bytes
void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out, size_t *out_len, const EC_FELEM *in)
Definition: ec_montgomery.c:142
ec_GFp_mont_jacobian_to_affine_batch
static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out, const EC_RAW_POINT *in, size_t num)
Definition: ec_montgomery.c:203
ec_GFp_simple_group_set_curve
#define ec_GFp_simple_group_set_curve
Definition: boringssl_prefix_symbols.h:3080
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
ec_GFp_simple_felem_to_bytes
#define ec_GFp_simple_felem_to_bytes
Definition: boringssl_prefix_symbols.h:3076
ec_method_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:463
ec_GFp_mont_felem_from_bytes
int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, const uint8_t *in, size_t len)
Definition: ec_montgomery.c:149
X
#define X(c)
ec_GFp_simple_is_at_infinity
#define ec_GFp_simple_is_at_infinity
Definition: boringssl_prefix_symbols.h:3082
ctx
Definition: benchmark-async.c:30
ec_GFp_mont_cmp_x_coordinate
static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, const EC_SCALAR *r)
Definition: ec_montgomery.c:455
bn_mod_inverse0_prime_mont_small
#define bn_mod_inverse0_prime_mont_small
Definition: boringssl_prefix_symbols.h:2873
bn_from_montgomery_small
#define bn_from_montgomery_small
Definition: boringssl_prefix_symbols.h:2857
y
const double y
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3611
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
EC_FELEM::words
BN_ULONG words[EC_MAX_WORDS]
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:198
ec_GFp_mont_mul
#define ec_GFp_mont_mul
Definition: boringssl_prefix_symbols.h:3068
ec_GFp_mont_felem_mul
void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b)
Definition: ec_montgomery.c:130
words
std::vector< std::string > words
Definition: bloaty/third_party/protobuf/src/google/protobuf/repeated_field_unittest.cc:1787
grpc.beta._metadata.beta
def beta(metadata)
Definition: src/python/grpcio/grpc/beta/_metadata.py:39
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
ec_GFp_mont_add
void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out, const EC_RAW_POINT *a, const EC_RAW_POINT *b)
Definition: ec_montgomery.c:249
ec_GFp_mont_felem_exp
static void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, const BN_ULONG *exp, size_t num_exp)
Definition: ec_montgomery.c:170
bignum_ctx
Definition: ctx.c:91
xds_manager.p
p
Definition: xds_manager.py:60
EC_GFp_mont_method
const EC_METHOD * EC_GFp_mont_method(void)
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
EC_RAW_POINT
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:260
bn_add_words
#define bn_add_words
Definition: boringssl_prefix_symbols.h:2851
ec_felem_sub
#define ec_felem_sub
Definition: boringssl_prefix_symbols.h:3102
ec_GFp_mont_group_finish
void ec_GFp_mont_group_finish(EC_GROUP *group)
Definition: ec_montgomery.c:87
ec_GFp_simple_group_init
#define ec_GFp_simple_group_init
Definition: boringssl_prefix_symbols.h:3079
ec_GFp_mont_mul_public_batch
#define ec_GFp_mont_mul_public_batch
Definition: boringssl_prefix_symbols.h:3072
in
const char * in
Definition: third_party/abseil-cpp/absl/strings/internal/str_format/parser_test.cc:391
ec_GFp_simple_group_finish
#define ec_GFp_simple_group_finish
Definition: boringssl_prefix_symbols.h:3077
ec_GFp_mont_group_init
int ec_GFp_mont_group_init(EC_GROUP *group)
Definition: ec_montgomery.c:79
setup.v
v
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:42
OPENSSL_memcpy
static void * OPENSSL_memcpy(void *dst, const void *src, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:819
ec_GFp_mont_init_precomp
#define ec_GFp_mont_init_precomp
Definition: boringssl_prefix_symbols.h:3067
err.h
ec_simple_scalar_inv0_montgomery
#define ec_simple_scalar_inv0_montgomery
Definition: boringssl_prefix_symbols.h:3141
ERR_R_BN_LIB
#define ERR_R_BN_LIB
Definition: err.h:331
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
bn_mod_mul_montgomery_small
#define bn_mod_mul_montgomery_small
Definition: boringssl_prefix_symbols.h:2879
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
EC_FELEM
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:195
ec_GFp_mont_felem_to_montgomery
static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *in)
Definition: ec_montgomery.c:111
ec_felem_select
#define ec_felem_select
Definition: boringssl_prefix_symbols.h:3101
BN_MONT_CTX_new_for_modulus
#define BN_MONT_CTX_new_for_modulus
Definition: boringssl_prefix_symbols.h:893
point
Definition: bloaty/third_party/zlib/examples/zran.c:67
ec_GFp_mont_felem_reduce
static void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out, const BN_ULONG *words, size_t num)
Definition: ec_montgomery.c:159
EC_AFFINE
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:269
upload.group
group
Definition: bloaty/third_party/googletest/googlemock/scripts/upload.py:397
ec_GFp_mont_mul_batch
#define ec_GFp_mont_mul_batch
Definition: boringssl_prefix_symbols.h:3070
ec_felem_non_zero_mask
#define ec_felem_non_zero_mask
Definition: boringssl_prefix_symbols.h:3100
ec_felem_add
#define ec_felem_add
Definition: boringssl_prefix_symbols.h:3096
bn_less_than_words
#define bn_less_than_words
Definition: boringssl_prefix_symbols.h:2865
bignum_st
Definition: bn.h:957
internal.h
ec_group_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:573
fix_build_deps.r
r
Definition: fix_build_deps.py:491
ec_simple_scalar_to_montgomery_inv_vartime
#define ec_simple_scalar_to_montgomery_inv_vartime
Definition: boringssl_prefix_symbols.h:3142
xds_manager.num
num
Definition: xds_manager.py:56
ec_felem_equal
#define ec_felem_equal
Definition: boringssl_prefix_symbols.h:3097
ok
bool ok
Definition: async_end2end_test.cc:197
ec_GFp_mont_point_get_affine_coordinates
static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x, EC_FELEM *y)
Definition: ec_montgomery.c:177
BN_MONT_CTX_free
#define BN_MONT_CTX_free
Definition: boringssl_prefix_symbols.h:890
ec_GFp_mont_mul_base
#define ec_GFp_mont_mul_base
Definition: boringssl_prefix_symbols.h:3069
ec_GFp_mont_felem_from_montgomery
static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *in)
Definition: ec_montgomery.c:117
EC_SCALAR
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:103
EC_R_POINT_AT_INFINITY
#define EC_R_POINT_AT_INFINITY
Definition: ec.h:426
mem.h
len
int len
Definition: abseil-cpp/absl/base/internal/low_level_alloc_test.cc:46
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
bn_mod_exp_mont_small
#define bn_mod_exp_mont_small
Definition: boringssl_prefix_symbols.h:2872
ec_GFp_mont_felem_inv0
static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a)
Definition: ec_montgomery.c:124
ec_GFp_mont_mul_precomp
#define ec_GFp_mont_mul_precomp
Definition: boringssl_prefix_symbols.h:3071
bn_to_montgomery_small
#define bn_to_montgomery_small
Definition: boringssl_prefix_symbols.h:2916
ec_GFp_simple_cmp_x_coordinate
#define ec_GFp_simple_cmp_x_coordinate
Definition: boringssl_prefix_symbols.h:3074
regress.m
m
Definition: regress/regress.py:25
ec.h
ec_GFp_mont_group_set_curve
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: ec_montgomery.c:93
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
ec_GFp_mont_dbl
void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a)
Definition: ec_montgomery.c:360
ec_GFp_simple_felem_from_bytes
#define ec_GFp_simple_felem_from_bytes
Definition: boringssl_prefix_symbols.h:3075
ec_GFp_mont_felem_sqr
void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r, const EC_FELEM *a)
Definition: ec_montgomery.c:136


grpc
Author(s):
autogenerated on Fri May 16 2025 02:58:18