div.c
Go to the documentation of this file.
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to. The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  * notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  * notice, this list of conditions and the following disclaimer in the
29  * documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  * must display the following acknowledgement:
32  * "This product includes cryptographic software written by
33  * Eric Young (eay@cryptsoft.com)"
34  * The word 'cryptographic' can be left out if the rouines from the library
35  * being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  * the apps directory (application code) you must include an acknowledgement:
38  * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed. i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 
62 #include <openssl/err.h>
63 
64 #include "internal.h"
65 
66 
67 // bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
68 // which must fit in a |BN_ULONG|.
69 OPENSSL_UNUSED static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l,
70  BN_ULONG d) {
71  BN_ULONG dh, dl, q, ret = 0, th, tl, t;
72  int i, count = 2;
73 
74  if (d == 0) {
75  return BN_MASK2;
76  }
77 
78  i = BN_num_bits_word(d);
79  assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
80 
81  i = BN_BITS2 - i;
82  if (h >= d) {
83  h -= d;
84  }
85 
86  if (i) {
87  d <<= i;
88  h = (h << i) | (l >> (BN_BITS2 - i));
89  l <<= i;
90  }
91  dh = (d & BN_MASK2h) >> BN_BITS4;
92  dl = (d & BN_MASK2l);
93  for (;;) {
94  if ((h >> BN_BITS4) == dh) {
95  q = BN_MASK2l;
96  } else {
97  q = h / dh;
98  }
99 
100  th = q * dh;
101  tl = dl * q;
102  for (;;) {
103  t = h - th;
104  if ((t & BN_MASK2h) ||
105  ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
106  break;
107  }
108  q--;
109  th -= dh;
110  tl -= dl;
111  }
112  t = (tl >> BN_BITS4);
113  tl = (tl << BN_BITS4) & BN_MASK2h;
114  th += t;
115 
116  if (l < tl) {
117  th++;
118  }
119  l -= tl;
120  if (h < th) {
121  h += d;
122  q--;
123  }
124  h -= th;
125 
126  if (--count == 0) {
127  break;
128  }
129 
130  ret = q << BN_BITS4;
131  h = (h << BN_BITS4) | (l >> BN_BITS4);
132  l = (l & BN_MASK2l) << BN_BITS4;
133  }
134 
135  ret |= q;
136  return ret;
137 }
138 
139 static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
140  BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
141  // GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
142  // the |BN_ULLONG|-based C code is used.
143  //
144  // GCC bugs:
145  // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
146  // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
147  // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
148  // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
149  // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
150  //
151  // Clang bugs:
152  // * https://llvm.org/bugs/show_bug.cgi?id=6397
153  // * https://llvm.org/bugs/show_bug.cgi?id=12418
154  //
155  // These issues aren't specific to x86 and x86_64, so it might be worthwhile
156  // to add more assembly language implementations.
157 #if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86)
158  __asm__ volatile("divl %4"
159  : "=a"(*quotient_out), "=d"(*rem_out)
160  : "a"(n1), "d"(n0), "rm"(d0)
161  : "cc");
162 #elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64)
163  __asm__ volatile("divq %4"
164  : "=a"(*quotient_out), "=d"(*rem_out)
165  : "a"(n1), "d"(n0), "rm"(d0)
166  : "cc");
167 #else
168 #if defined(BN_CAN_DIVIDE_ULLONG)
169  BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
170  *quotient_out = (BN_ULONG)(n / d0);
171 #else
172  *quotient_out = bn_div_words(n0, n1, d0);
173 #endif
174  *rem_out = n1 - (*quotient_out * d0);
175 #endif
176 }
177 
178 // BN_div computes "quotient := numerator / divisor", rounding towards zero,
179 // and sets up |rem| such that "quotient * divisor + rem = numerator" holds.
180 //
181 // Thus:
182 //
183 // quotient->neg == numerator->neg ^ divisor->neg
184 // (unless the result is zero)
185 // rem->neg == numerator->neg
186 // (unless the remainder is zero)
187 //
188 // If |quotient| or |rem| is NULL, the respective value is not returned.
189 //
190 // This was specifically designed to contain fewer branches that may leak
191 // sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
192 // and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
193 // Jean-Pierre Seifert.
194 int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
195  const BIGNUM *divisor, BN_CTX *ctx) {
196  int norm_shift, loop;
197  BIGNUM wnum;
198  BN_ULONG *resp, *wnump;
199  BN_ULONG d0, d1;
200  int num_n, div_n;
201 
202  // This function relies on the historical minimal-width |BIGNUM| invariant.
203  // It is already not constant-time (constant-time reductions should use
204  // Montgomery logic), so we shrink all inputs and intermediate values to
205  // retain the previous behavior.
206 
207  // Invalid zero-padding would have particularly bad consequences.
208  int numerator_width = bn_minimal_width(numerator);
209  int divisor_width = bn_minimal_width(divisor);
210  if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) ||
211  (divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) {
213  return 0;
214  }
215 
216  if (BN_is_zero(divisor)) {
218  return 0;
219  }
220 
221  BN_CTX_start(ctx);
222  BIGNUM *tmp = BN_CTX_get(ctx);
223  BIGNUM *snum = BN_CTX_get(ctx);
224  BIGNUM *sdiv = BN_CTX_get(ctx);
225  BIGNUM *res = NULL;
226  if (quotient == NULL) {
227  res = BN_CTX_get(ctx);
228  } else {
229  res = quotient;
230  }
231  if (sdiv == NULL || res == NULL) {
232  goto err;
233  }
234 
235  // First we normalise the numbers
236  norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
237  if (!BN_lshift(sdiv, divisor, norm_shift)) {
238  goto err;
239  }
240  bn_set_minimal_width(sdiv);
241  sdiv->neg = 0;
242  norm_shift += BN_BITS2;
243  if (!BN_lshift(snum, numerator, norm_shift)) {
244  goto err;
245  }
246  bn_set_minimal_width(snum);
247  snum->neg = 0;
248 
249  // Since we don't want to have special-case logic for the case where snum is
250  // larger than sdiv, we pad snum with enough zeroes without changing its
251  // value.
252  if (snum->width <= sdiv->width + 1) {
253  if (!bn_wexpand(snum, sdiv->width + 2)) {
254  goto err;
255  }
256  for (int i = snum->width; i < sdiv->width + 2; i++) {
257  snum->d[i] = 0;
258  }
259  snum->width = sdiv->width + 2;
260  } else {
261  if (!bn_wexpand(snum, snum->width + 1)) {
262  goto err;
263  }
264  snum->d[snum->width] = 0;
265  snum->width++;
266  }
267 
268  div_n = sdiv->width;
269  num_n = snum->width;
270  loop = num_n - div_n;
271  // Lets setup a 'window' into snum
272  // This is the part that corresponds to the current
273  // 'area' being divided
274  wnum.neg = 0;
275  wnum.d = &(snum->d[loop]);
276  wnum.width = div_n;
277  // only needed when BN_ucmp messes up the values between width and max
278  wnum.dmax = snum->dmax - loop; // so we don't step out of bounds
279 
280  // Get the top 2 words of sdiv
281  // div_n=sdiv->width;
282  d0 = sdiv->d[div_n - 1];
283  d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
284 
285  // pointer to the 'top' of snum
286  wnump = &(snum->d[num_n - 1]);
287 
288  // Setup |res|. |numerator| and |res| may alias, so we save |numerator->neg|
289  // for later.
290  const int numerator_neg = numerator->neg;
291  res->neg = (numerator_neg ^ divisor->neg);
292  if (!bn_wexpand(res, loop + 1)) {
293  goto err;
294  }
295  res->width = loop - 1;
296  resp = &(res->d[loop - 1]);
297 
298  // space for temp
299  if (!bn_wexpand(tmp, div_n + 1)) {
300  goto err;
301  }
302 
303  // if res->width == 0 then clear the neg value otherwise decrease
304  // the resp pointer
305  if (res->width == 0) {
306  res->neg = 0;
307  } else {
308  resp--;
309  }
310 
311  for (int i = 0; i < loop - 1; i++, wnump--, resp--) {
312  BN_ULONG q, l0;
313  // the first part of the loop uses the top two words of snum and sdiv to
314  // calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
315  BN_ULONG n0, n1, rm = 0;
316 
317  n0 = wnump[0];
318  n1 = wnump[-1];
319  if (n0 == d0) {
320  q = BN_MASK2;
321  } else {
322  // n0 < d0
323  bn_div_rem_words(&q, &rm, n0, n1, d0);
324 
325 #ifdef BN_ULLONG
326  BN_ULLONG t2 = (BN_ULLONG)d1 * q;
327  for (;;) {
328  if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) {
329  break;
330  }
331  q--;
332  rm += d0;
333  if (rm < d0) {
334  break; // don't let rm overflow
335  }
336  t2 -= d1;
337  }
338 #else // !BN_ULLONG
339  BN_ULONG t2l, t2h;
340  BN_UMULT_LOHI(t2l, t2h, d1, q);
341  for (;;) {
342  if (t2h < rm ||
343  (t2h == rm && t2l <= wnump[-2])) {
344  break;
345  }
346  q--;
347  rm += d0;
348  if (rm < d0) {
349  break; // don't let rm overflow
350  }
351  if (t2l < d1) {
352  t2h--;
353  }
354  t2l -= d1;
355  }
356 #endif // !BN_ULLONG
357  }
358 
359  l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
360  tmp->d[div_n] = l0;
361  wnum.d--;
362  // ingore top values of the bignums just sub the two
363  // BN_ULONG arrays with bn_sub_words
364  if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
365  // Note: As we have considered only the leading
366  // two BN_ULONGs in the calculation of q, sdiv * q
367  // might be greater than wnum (but then (q-1) * sdiv
368  // is less or equal than wnum)
369  q--;
370  if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
371  // we can't have an overflow here (assuming
372  // that q != 0, but if q == 0 then tmp is
373  // zero anyway)
374  (*wnump)++;
375  }
376  }
377  // store part of the result
378  *resp = q;
379  }
380 
381  bn_set_minimal_width(snum);
382 
383  if (rem != NULL) {
384  if (!BN_rshift(rem, snum, norm_shift)) {
385  goto err;
386  }
387  if (!BN_is_zero(rem)) {
388  rem->neg = numerator_neg;
389  }
390  }
391 
393  BN_CTX_end(ctx);
394  return 1;
395 
396 err:
397  BN_CTX_end(ctx);
398  return 0;
399 }
400 
401 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
402  if (!(BN_mod(r, m, d, ctx))) {
403  return 0;
404  }
405  if (!r->neg) {
406  return 1;
407  }
408 
409  // now -|d| < r < 0, so we have to set r := r + |d|.
410  return (d->neg ? BN_sub : BN_add)(r, r, d);
411 }
412 
413 BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
414  const BN_ULONG *m, size_t num) {
415  assert(r != a);
416  // |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and
417  // then we apply the borrow to |carry|.
418  carry -= bn_sub_words(r, a, m, num);
419  // We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|.
420  //
421  // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
422  // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
423  // return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both
424  // cases, |carry| is a suitable input to |bn_select_words|.
425  //
426  // Although |carry| may be one if it was one on input and |bn_sub_words|
427  // returns zero, this would give |r| > |m|, violating our input assumptions.
428  assert(carry == 0 || carry == (BN_ULONG)-1);
429  bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num);
430  return carry;
431 }
432 
433 BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
434  BN_ULONG *tmp, size_t num) {
435  // See |bn_reduce_once| for why this logic works.
436  carry -= bn_sub_words(tmp, r, m, num);
437  assert(carry == 0 || carry == (BN_ULONG)-1);
438  bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
439  return carry;
440 }
441 
442 void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
443  const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
444  // r = a - b
445  BN_ULONG borrow = bn_sub_words(r, a, b, num);
446  // tmp = a - b + m
447  bn_add_words(tmp, r, m, num);
448  bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
449 }
450 
451 void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
452  const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
453  BN_ULONG carry = bn_add_words(r, a, b, num);
454  bn_reduce_once_in_place(r, carry, m, tmp, num);
455 }
456 
457 int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
458  const BIGNUM *numerator, const BIGNUM *divisor,
459  unsigned divisor_min_bits, BN_CTX *ctx) {
460  if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
462  return 0;
463  }
464  if (BN_is_zero(divisor)) {
466  return 0;
467  }
468 
469  // This function implements long division in binary. It is not very efficient,
470  // but it is simple, easy to make constant-time, and performant enough for RSA
471  // key generation.
472 
473  int ret = 0;
474  BN_CTX_start(ctx);
475  BIGNUM *q = quotient, *r = remainder;
476  if (quotient == NULL || quotient == numerator || quotient == divisor) {
477  q = BN_CTX_get(ctx);
478  }
479  if (remainder == NULL || remainder == numerator || remainder == divisor) {
480  r = BN_CTX_get(ctx);
481  }
482  BIGNUM *tmp = BN_CTX_get(ctx);
483  if (q == NULL || r == NULL || tmp == NULL ||
484  !bn_wexpand(q, numerator->width) ||
485  !bn_wexpand(r, divisor->width) ||
486  !bn_wexpand(tmp, divisor->width)) {
487  goto err;
488  }
489 
490  OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
491  q->width = numerator->width;
492  q->neg = 0;
493 
494  OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
495  r->width = divisor->width;
496  r->neg = 0;
497 
498  // Incorporate |numerator| into |r|, one bit at a time, reducing after each
499  // step. We maintain the invariant that |0 <= r < divisor| and
500  // |q * divisor + r = n| where |n| is the portion of |numerator| incorporated
501  // so far.
502  //
503  // First, we short-circuit the loop: if we know |divisor| has at least
504  // |divisor_min_bits| bits, the top |divisor_min_bits - 1| can be incorporated
505  // without reductions. This significantly speeds up |RSA_check_key|. For
506  // simplicity, we round down to a whole number of words.
507  assert(divisor_min_bits <= BN_num_bits(divisor));
508  int initial_words = 0;
509  if (divisor_min_bits > 0) {
510  initial_words = (divisor_min_bits - 1) / BN_BITS2;
511  if (initial_words > numerator->width) {
512  initial_words = numerator->width;
513  }
514  OPENSSL_memcpy(r->d, numerator->d + numerator->width - initial_words,
515  initial_words * sizeof(BN_ULONG));
516  }
517 
518  for (int i = numerator->width - initial_words - 1; i >= 0; i--) {
519  for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
520  // Incorporate the next bit of the numerator, by computing
521  // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
522  // extra word in |carry|.
523  BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
524  r->d[0] |= (numerator->d[i] >> bit) & 1;
525  // |r| was previously fully-reduced, so we know:
526  // 2*0 <= r <= 2*(divisor-1) + 1
527  // 0 <= r <= 2*divisor - 1 < 2*divisor.
528  // Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|.
529  BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d,
530  tmp->d, divisor->width);
531  // The corresponding bit of the quotient is set iff we needed to subtract.
532  q->d[i] |= (~subtracted & 1) << bit;
533  }
534  }
535 
536  if ((quotient != NULL && !BN_copy(quotient, q)) ||
537  (remainder != NULL && !BN_copy(remainder, r))) {
538  goto err;
539  }
540 
541  ret = 1;
542 
543 err:
544  BN_CTX_end(ctx);
545  return ret;
546 }
547 
549  BIGNUM *ret = BN_CTX_get(ctx);
550  if (ret == NULL ||
551  !bn_wexpand(ret, width)) {
552  return NULL;
553  }
554  ret->neg = 0;
555  ret->width = width;
556  return ret;
557 }
558 
559 // bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
560 // error. This is so it may be used with low-level "words" functions. If
561 // necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
562 // in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
563 // |width| words.
564 static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
565  BN_CTX *ctx) {
566  if ((size_t)bn->width >= width) {
567  // Any excess words must be zero.
568  assert(bn_fits_in_words(bn, width));
569  return bn;
570  }
572  if (ret == NULL ||
573  !BN_copy(ret, bn) ||
575  return NULL;
576  }
577  return ret;
578 }
579 
580 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
581  BN_CTX *ctx) {
582  if (!BN_add(r, a, b)) {
583  return 0;
584  }
585  return BN_nnmod(r, r, m, ctx);
586 }
587 
588 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
589  const BIGNUM *m) {
590  BN_CTX *ctx = BN_CTX_new();
591  int ok = ctx != NULL &&
592  bn_mod_add_consttime(r, a, b, m, ctx);
593  BN_CTX_free(ctx);
594  return ok;
595 }
596 
597 int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
598  const BIGNUM *m, BN_CTX *ctx) {
599  BN_CTX_start(ctx);
600  a = bn_resized_from_ctx(a, m->width, ctx);
601  b = bn_resized_from_ctx(b, m->width, ctx);
603  int ok = a != NULL && b != NULL && tmp != NULL &&
604  bn_wexpand(r, m->width);
605  if (ok) {
606  bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
607  r->width = m->width;
608  r->neg = 0;
609  }
610  BN_CTX_end(ctx);
611  return ok;
612 }
613 
614 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
615  BN_CTX *ctx) {
616  if (!BN_sub(r, a, b)) {
617  return 0;
618  }
619  return BN_nnmod(r, r, m, ctx);
620 }
621 
622 int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
623  const BIGNUM *m, BN_CTX *ctx) {
624  BN_CTX_start(ctx);
625  a = bn_resized_from_ctx(a, m->width, ctx);
626  b = bn_resized_from_ctx(b, m->width, ctx);
628  int ok = a != NULL && b != NULL && tmp != NULL &&
629  bn_wexpand(r, m->width);
630  if (ok) {
631  bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
632  r->width = m->width;
633  r->neg = 0;
634  }
635  BN_CTX_end(ctx);
636  return ok;
637 }
638 
639 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
640  const BIGNUM *m) {
641  BN_CTX *ctx = BN_CTX_new();
642  int ok = ctx != NULL &&
643  bn_mod_sub_consttime(r, a, b, m, ctx);
644  BN_CTX_free(ctx);
645  return ok;
646 }
647 
648 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
649  BN_CTX *ctx) {
650  BIGNUM *t;
651  int ret = 0;
652 
653  BN_CTX_start(ctx);
654  t = BN_CTX_get(ctx);
655  if (t == NULL) {
656  goto err;
657  }
658 
659  if (a == b) {
660  if (!BN_sqr(t, a, ctx)) {
661  goto err;
662  }
663  } else {
664  if (!BN_mul(t, a, b, ctx)) {
665  goto err;
666  }
667  }
668 
669  if (!BN_nnmod(r, t, m, ctx)) {
670  goto err;
671  }
672 
673  ret = 1;
674 
675 err:
676  BN_CTX_end(ctx);
677  return ret;
678 }
679 
680 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
681  if (!BN_sqr(r, a, ctx)) {
682  return 0;
683  }
684 
685  // r->neg == 0, thus we don't need BN_nnmod
686  return BN_mod(r, r, m, ctx);
687 }
688 
689 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
690  BN_CTX *ctx) {
691  BIGNUM *abs_m = NULL;
692  int ret;
693 
694  if (!BN_nnmod(r, a, m, ctx)) {
695  return 0;
696  }
697 
698  if (m->neg) {
699  abs_m = BN_dup(m);
700  if (abs_m == NULL) {
701  return 0;
702  }
703  abs_m->neg = 0;
704  }
705 
706  ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx);
707 
708  BN_free(abs_m);
709  return ret;
710 }
711 
712 int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
713  BN_CTX *ctx) {
714  if (!BN_copy(r, a)) {
715  return 0;
716  }
717  for (int i = 0; i < n; i++) {
718  if (!bn_mod_lshift1_consttime(r, r, m, ctx)) {
719  return 0;
720  }
721  }
722  return 1;
723 }
724 
725 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
726  BN_CTX *ctx = BN_CTX_new();
727  int ok = ctx != NULL &&
729  BN_CTX_free(ctx);
730  return ok;
731 }
732 
733 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
734  if (!BN_lshift1(r, a)) {
735  return 0;
736  }
737 
738  return BN_nnmod(r, r, m, ctx);
739 }
740 
742  BN_CTX *ctx) {
743  return bn_mod_add_consttime(r, a, a, m, ctx);
744 }
745 
746 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
747  BN_CTX *ctx = BN_CTX_new();
748  int ok = ctx != NULL &&
750  BN_CTX_free(ctx);
751  return ok;
752 }
753 
754 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
755  BN_ULONG ret = 0;
756  int i, j;
757 
758  if (!w) {
759  // actually this an error (division by zero)
760  return (BN_ULONG) - 1;
761  }
762 
763  if (a->width == 0) {
764  return 0;
765  }
766 
767  // normalize input for |bn_div_rem_words|.
768  j = BN_BITS2 - BN_num_bits_word(w);
769  w <<= j;
770  if (!BN_lshift(a, a, j)) {
771  return (BN_ULONG) - 1;
772  }
773 
774  for (i = a->width - 1; i >= 0; i--) {
775  BN_ULONG l = a->d[i];
776  BN_ULONG d;
777  BN_ULONG unused_rem;
778  bn_div_rem_words(&d, &unused_rem, ret, l, w);
779  ret = l - (d * w);
780  a->d[i] = d;
781  }
782 
784  ret >>= j;
785  return ret;
786 }
787 
788 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
789 #ifndef BN_CAN_DIVIDE_ULLONG
790  BN_ULONG ret = 0;
791 #else
792  BN_ULLONG ret = 0;
793 #endif
794  int i;
795 
796  if (w == 0) {
797  return (BN_ULONG) -1;
798  }
799 
800 #ifndef BN_CAN_DIVIDE_ULLONG
801  // If |w| is too long and we don't have |BN_ULLONG| division then we need to
802  // fall back to using |BN_div_word|.
803  if (w > ((BN_ULONG)1 << BN_BITS4)) {
804  BIGNUM *tmp = BN_dup(a);
805  if (tmp == NULL) {
806  return (BN_ULONG)-1;
807  }
808  ret = BN_div_word(tmp, w);
809  BN_free(tmp);
810  return ret;
811  }
812 #endif
813 
814  for (i = a->width - 1; i >= 0; i--) {
815 #ifndef BN_CAN_DIVIDE_ULLONG
816  ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
817  ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
818 #else
819  ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
820 #endif
821  }
822  return (BN_ULONG)ret;
823 }
824 
825 int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
826  if (e == 0 || a->width == 0) {
827  BN_zero(r);
828  return 1;
829  }
830 
831  size_t num_words = 1 + ((e - 1) / BN_BITS2);
832 
833  // If |a| definitely has less than |e| bits, just BN_copy.
834  if ((size_t) a->width < num_words) {
835  return BN_copy(r, a) != NULL;
836  }
837 
838  // Otherwise, first make sure we have enough space in |r|.
839  // Note that this will fail if num_words > INT_MAX.
840  if (!bn_wexpand(r, num_words)) {
841  return 0;
842  }
843 
844  // Copy the content of |a| into |r|.
845  OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
846 
847  // If |e| isn't word-aligned, we have to mask off some of our bits.
848  size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
849  if (top_word_exponent != 0) {
850  r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
851  }
852 
853  // Fill in the remaining fields of |r|.
854  r->neg = a->neg;
855  r->width = (int) num_words;
857  return 1;
858 }
859 
860 int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
861  if (!BN_mod_pow2(r, a, e)) {
862  return 0;
863  }
864 
865  // If the returned value was non-negative, we're done.
866  if (BN_is_zero(r) || !r->neg) {
867  return 1;
868  }
869 
870  size_t num_words = 1 + (e - 1) / BN_BITS2;
871 
872  // Expand |r| to the size of our modulus.
873  if (!bn_wexpand(r, num_words)) {
874  return 0;
875  }
876 
877  // Clear the upper words of |r|.
878  OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES);
879 
880  // Set parameters of |r|.
881  r->neg = 0;
882  r->width = (int) num_words;
883 
884  // Now, invert every word. The idea here is that we want to compute 2^e-|x|,
885  // which is actually equivalent to the twos-complement representation of |x|
886  // in |e| bits, which is -x = ~x + 1.
887  for (int i = 0; i < r->width; i++) {
888  r->d[i] = ~r->d[i];
889  }
890 
891  // If our exponent doesn't span the top word, we have to mask the rest.
892  size_t top_word_exponent = e % BN_BITS2;
893  if (top_word_exponent != 0) {
894  r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
895  }
896 
897  // Keep the minimal-width invariant for |BIGNUM|.
899 
900  // Finally, add one, for the reason described above.
901  return BN_add(r, r, BN_value_one());
902 }
async_greeter_server_with_graceful_shutdown.loop
loop
Definition: async_greeter_server_with_graceful_shutdown.py:59
bn.h
width
int width
Definition: libuv/docs/code/tty-gravity/main.c:10
BN_mod_lshift_quick
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m)
Definition: div.c:725
bn_select_words
#define bn_select_words
Definition: boringssl_prefix_symbols.h:2904
bn_set_minimal_width
#define bn_set_minimal_width
Definition: boringssl_prefix_symbols.h:2905
bn_mod_sub_words
void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, BN_ULONG *tmp, size_t num)
Definition: div.c:442
BN_mod_pow2
int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e)
Definition: div.c:825
ctx
Definition: benchmark-async.c:30
BN_dup
#define BN_dup
Definition: boringssl_prefix_symbols.h:919
bn_resize_words
#define bn_resize_words
Definition: boringssl_prefix_symbols.h:2899
OPENSSL_UNUSED
#define OPENSSL_UNUSED
Definition: base.h:253
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
bignum_st::width
int width
Definition: bn.h:975
bn_div_words
static OPENSSL_UNUSED BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
Definition: div.c:69
bn_div_rem_words
static void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out, BN_ULONG n0, BN_ULONG n1, BN_ULONG d0)
Definition: div.c:139
BN_mod_lshift
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:689
error_ref_leak.err
err
Definition: error_ref_leak.py:35
bn_div_consttime
int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator, const BIGNUM *divisor, unsigned divisor_min_bits, BN_CTX *ctx)
Definition: div.c:457
BN_mod_add
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:580
bn_fits_in_words
#define bn_fits_in_words
Definition: boringssl_prefix_symbols.h:2855
bn_reduce_once
BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry, const BN_ULONG *m, size_t num)
Definition: div.c:413
BN_mod
#define BN_mod(rem, numerator, divisor, ctx)
Definition: bn.h:527
bn_sub_words
#define bn_sub_words
Definition: boringssl_prefix_symbols.h:2915
BN_free
#define BN_free
Definition: boringssl_prefix_symbols.h:923
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
BN_R_NEGATIVE_NUMBER
#define BN_R_NEGATIVE_NUMBER
Definition: bn.h:1045
bignum_ctx
Definition: ctx.c:91
BN_CTX_get
#define BN_CTX_get
Definition: boringssl_prefix_symbols.h:884
BN_mod_sub_quick
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m)
Definition: div.c:639
BN_R_DIV_BY_ZERO
#define BN_R_DIV_BY_ZERO
Definition: bn.h:1041
BN_nnmod
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx)
Definition: div.c:401
bn_wexpand
#define bn_wexpand
Definition: boringssl_prefix_symbols.h:2919
OPENSSL_memset
static void * OPENSSL_memset(void *dst, int c, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:835
BN_sub
#define BN_sub
Definition: boringssl_prefix_symbols.h:995
bn_add_words
#define bn_add_words
Definition: boringssl_prefix_symbols.h:2851
BN_value_one
const OPENSSL_EXPORT BIGNUM * BN_value_one(void)
BN_lshift
#define BN_lshift
Definition: boringssl_prefix_symbols.h:942
BN_mod_lshift1_quick
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m)
Definition: div.c:746
bn_resized_from_ctx
static const BIGNUM * bn_resized_from_ctx(const BIGNUM *bn, size_t width, BN_CTX *ctx)
Definition: div.c:564
bn_minimal_width
#define bn_minimal_width
Definition: boringssl_prefix_symbols.h:2868
BN_mod_sub
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:614
BN_mod_mul
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:648
BN_div
int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator, const BIGNUM *divisor, BN_CTX *ctx)
Definition: div.c:194
xds_interop_client.int
int
Definition: xds_interop_client.py:113
BN_mod_add_quick
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m)
Definition: div.c:588
BN_R_NOT_INITIALIZED
#define BN_R_NOT_INITIALIZED
Definition: bn.h:1047
http2_server_health_check.resp
resp
Definition: http2_server_health_check.py:31
OPENSSL_memcpy
static void * OPENSSL_memcpy(void *dst, const void *src, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:819
BN_div_word
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w)
Definition: div.c:754
err.h
bn_mod_sub_consttime
int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:622
BN_mul
#define BN_mul
Definition: boringssl_prefix_symbols.h:969
BN_is_zero
#define BN_is_zero
Definition: boringssl_prefix_symbols.h:940
BN_CTX_new
#define BN_CTX_new
Definition: boringssl_prefix_symbols.h:885
rm
static bool rm(upb_table *t, lookupkey_t key, upb_value *val, upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql)
Definition: bloaty/third_party/protobuf/php/ext/google/protobuf/upb.c:1477
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
d
static const fe d
Definition: curve25519_tables.h:19
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
BN_copy
#define BN_copy
Definition: boringssl_prefix_symbols.h:914
BN_num_bits
#define BN_num_bits
Definition: boringssl_prefix_symbols.h:974
BN_mod_word
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w)
Definition: div.c:788
bignum_st::neg
int neg
Definition: bn.h:979
BN_zero
#define BN_zero
Definition: boringssl_prefix_symbols.h:1004
BN_lshift1
#define BN_lshift1
Definition: boringssl_prefix_symbols.h:943
bn_mul_words
#define bn_mul_words
Definition: boringssl_prefix_symbols.h:2891
bn_mod_add_words
void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, BN_ULONG *tmp, size_t num)
Definition: div.c:451
count
int * count
Definition: bloaty/third_party/googletest/googlemock/test/gmock_stress_test.cc:96
BN_CTX_start
#define BN_CTX_start
Definition: boringssl_prefix_symbols.h:886
bignum_st
Definition: bn.h:957
internal.h
BN_CTX_free
#define BN_CTX_free
Definition: boringssl_prefix_symbols.h:883
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
fix_build_deps.r
r
Definition: fix_build_deps.py:491
bignum_st::d
BN_ULONG * d
Definition: bn.h:960
bn_mod_lshift_consttime
int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:712
bn_reduce_once_in_place
BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m, BN_ULONG *tmp, size_t num)
Definition: div.c:433
xds_manager.num
num
Definition: xds_manager.py:56
BN_mod_lshift1
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:733
ok
bool ok
Definition: async_end2end_test.cc:197
bn_scratch_space_from_ctx
static BIGNUM * bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx)
Definition: div.c:548
BN_is_negative
#define BN_is_negative
Definition: boringssl_prefix_symbols.h:933
BN_sqr
#define BN_sqr
Definition: boringssl_prefix_symbols.h:993
BN_CTX_end
#define BN_CTX_end
Definition: boringssl_prefix_symbols.h:882
BN_mod_sqr
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:680
BN_add
#define BN_add
Definition: boringssl_prefix_symbols.h:897
bn_mod_add_consttime
int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:597
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
BN_num_bits_word
#define BN_num_bits_word
Definition: boringssl_prefix_symbols.h:975
run_grpclb_interop_tests.l
dictionary l
Definition: run_grpclb_interop_tests.py:410
regress.m
m
Definition: regress/regress.py:25
BN_rshift
#define BN_rshift
Definition: boringssl_prefix_symbols.h:987
bignum_st::dmax
int dmax
Definition: bn.h:977
BN_nnmod_pow2
int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e)
Definition: div.c:860
bn_mod_lshift1_consttime
int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:741
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230


grpc
Author(s):
autogenerated on Thu Mar 13 2025 02:59:12