abseil-cpp/absl/strings/charconv.cc
Go to the documentation of this file.
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/charconv.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <cmath>
20 #include <cstring>
21 
22 #include "absl/base/casts.h"
23 #include "absl/numeric/bits.h"
24 #include "absl/numeric/int128.h"
25 #include "absl/strings/internal/charconv_bigint.h"
26 #include "absl/strings/internal/charconv_parse.h"
27 
28 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
29 // point numbers have the same endianness in memory as a bitfield struct
30 // containing the corresponding parts.
31 //
32 // When set, we replace calls to ldexp() with manual bit packing, which is
33 // faster and is unaffected by floating point environment.
34 #ifdef ABSL_BIT_PACK_FLOATS
35 #error ABSL_BIT_PACK_FLOATS cannot be directly set
36 #elif defined(__x86_64__) || defined(_M_X64)
37 #define ABSL_BIT_PACK_FLOATS 1
38 #endif
39 
40 // A note about subnormals:
41 //
42 // The code below talks about "normals" and "subnormals". A normal IEEE float
43 // has a fixed-width mantissa and power of two exponent. For example, a normal
44 // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
45 // stored in the representation. The implicit bit buys an extra bit of
46 // resolution in the datatype.
47 //
48 // The downside of this scheme is that there is a large gap between DBL_MIN and
49 // zero. (Large, at least, relative to the different between DBL_MIN and the
50 // next representable number). This gap is softened by the "subnormal" numbers,
51 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
52 // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
53 // is represented as a subnormal with an all-bits-zero mantissa.)
54 //
55 // The code below, in calculations, represents the mantissa as a uint64_t. The
56 // end result normally has the 53rd bit set. It represents subnormals by using
57 // narrower mantissas.
58 
59 namespace absl {
61 namespace {
62 
63 template <typename FloatType>
64 struct FloatTraits;
65 
66 template <>
67 struct FloatTraits<double> {
68  // The number of mantissa bits in the given float type. This includes the
69  // implied high bit.
70  static constexpr int kTargetMantissaBits = 53;
71 
72  // The largest supported IEEE exponent, in our integral mantissa
73  // representation.
74  //
75  // If `m` is the largest possible int kTargetMantissaBits bits wide, then
76  // m * 2**kMaxExponent is exactly equal to DBL_MAX.
77  static constexpr int kMaxExponent = 971;
78 
79  // The smallest supported IEEE normal exponent, in our integral mantissa
80  // representation.
81  //
82  // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
83  // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
84  static constexpr int kMinNormalExponent = -1074;
85 
86  static double MakeNan(const char* tagp) {
87  // Support nan no matter which namespace it's in. Some platforms
88  // incorrectly don't put it in namespace std.
89  using namespace std; // NOLINT
90  return nan(tagp);
91  }
92 
93  // Builds a nonzero floating point number out of the provided parts.
94  //
95  // This is intended to do the same operation as ldexp(mantissa, exponent),
96  // but using purely integer math, to avoid -ffastmath and floating
97  // point environment issues. Using type punning is also faster. We fall back
98  // to ldexp on a per-platform basis for portability.
99  //
100  // `exponent` must be between kMinNormalExponent and kMaxExponent.
101  //
102  // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
103  // a normal value is made, or it must be less narrow than that, in which case
104  // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
105  // made.
106  static double Make(uint64_t mantissa, int exponent, bool sign) {
107 #ifndef ABSL_BIT_PACK_FLOATS
108  // Support ldexp no matter which namespace it's in. Some platforms
109  // incorrectly don't put it in namespace std.
110  using namespace std; // NOLINT
111  return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
112 #else
113  constexpr uint64_t kMantissaMask =
114  (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
115  uint64_t dbl = static_cast<uint64_t>(sign) << 63;
116  if (mantissa > kMantissaMask) {
117  // Normal value.
118  // Adjust by 1023 for the exponent representation bias, and an additional
119  // 52 due to the implied decimal point in the IEEE mantissa represenation.
120  dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52;
121  mantissa &= kMantissaMask;
122  } else {
123  // subnormal value
124  assert(exponent == kMinNormalExponent);
125  }
126  dbl += mantissa;
127  return absl::bit_cast<double>(dbl);
128 #endif // ABSL_BIT_PACK_FLOATS
129  }
130 };
131 
132 // Specialization of floating point traits for the `float` type. See the
133 // FloatTraits<double> specialization above for meaning of each of the following
134 // members and methods.
135 template <>
136 struct FloatTraits<float> {
137  static constexpr int kTargetMantissaBits = 24;
138  static constexpr int kMaxExponent = 104;
139  static constexpr int kMinNormalExponent = -149;
140  static float MakeNan(const char* tagp) {
141  // Support nanf no matter which namespace it's in. Some platforms
142  // incorrectly don't put it in namespace std.
143  using namespace std; // NOLINT
144  return nanf(tagp);
145  }
146  static float Make(uint32_t mantissa, int exponent, bool sign) {
147 #ifndef ABSL_BIT_PACK_FLOATS
148  // Support ldexpf no matter which namespace it's in. Some platforms
149  // incorrectly don't put it in namespace std.
150  using namespace std; // NOLINT
151  return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
152 #else
153  constexpr uint32_t kMantissaMask =
154  (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
155  uint32_t flt = static_cast<uint32_t>(sign) << 31;
156  if (mantissa > kMantissaMask) {
157  // Normal value.
158  // Adjust by 127 for the exponent representation bias, and an additional
159  // 23 due to the implied decimal point in the IEEE mantissa represenation.
160  flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23;
161  mantissa &= kMantissaMask;
162  } else {
163  // subnormal value
164  assert(exponent == kMinNormalExponent);
165  }
166  flt += mantissa;
167  return absl::bit_cast<float>(flt);
168 #endif // ABSL_BIT_PACK_FLOATS
169  }
170 };
171 
172 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
173 // and a power of 2. The two helper functions Power10Mantissa(n) and
174 // Power10Exponent(n) perform this task. Together, these represent a hand-
175 // rolled floating point value which is equal to or just less than 10**n.
176 //
177 // The return values satisfy two range guarantees:
178 //
179 // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
180 // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
181 //
182 // 2**63 <= Power10Mantissa(n) < 2**64.
183 //
184 // Lookups into the power-of-10 table must first check the Power10Overflow() and
185 // Power10Underflow() functions, to avoid out-of-bounds table access.
186 //
187 // Indexes into these tables are biased by -kPower10TableMin, and the table has
188 // values in the range [kPower10TableMin, kPower10TableMax].
189 extern const uint64_t kPower10MantissaTable[];
190 extern const int16_t kPower10ExponentTable[];
191 
192 // The smallest allowed value for use with the Power10Mantissa() and
193 // Power10Exponent() functions below. (If a smaller exponent is needed in
194 // calculations, the end result is guaranteed to underflow.)
195 constexpr int kPower10TableMin = -342;
196 
197 // The largest allowed value for use with the Power10Mantissa() and
198 // Power10Exponent() functions below. (If a smaller exponent is needed in
199 // calculations, the end result is guaranteed to overflow.)
200 constexpr int kPower10TableMax = 308;
201 
204 }
205 
206 int Power10Exponent(int n) {
208 }
209 
210 // Returns true if n is large enough that 10**n always results in an IEEE
211 // overflow.
212 bool Power10Overflow(int n) { return n > kPower10TableMax; }
213 
214 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
215 // always results in an IEEE underflow.
216 bool Power10Underflow(int n) { return n < kPower10TableMin; }
217 
218 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
219 // to 10**n numerically. Put another way, this returns true if there is no
220 // truncation error in Power10Mantissa(n).
221 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
222 
223 // Sentinel exponent values for representing numbers too large or too close to
224 // zero to represent in a double.
225 constexpr int kOverflow = 99999;
226 constexpr int kUnderflow = -99999;
227 
228 // Struct representing the calculated conversion result of a positive (nonzero)
229 // floating point number.
230 //
231 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
232 // integer.) `mantissa` is chosen to be the correct width for the IEEE float
233 // representation being calculated. (`mantissa` will always have the same bit
234 // width for normal values, and narrower bit widths for subnormals.)
235 //
236 // If the result of conversion was an underflow or overflow, exponent is set
237 // to kUnderflow or kOverflow.
240  int exponent = 0;
241 };
242 
243 // Returns the bit width of the given uint128. (Equivalently, returns 128
244 // minus the number of leading zero bits.)
245 unsigned BitWidth(uint128 value) {
246  if (Uint128High64(value) == 0) {
247  return static_cast<unsigned>(bit_width(Uint128Low64(value)));
248  }
249  return 128 - countl_zero(Uint128High64(value));
250 }
251 
252 // Calculates how far to the right a mantissa needs to be shifted to create a
253 // properly adjusted mantissa for an IEEE floating point number.
254 //
255 // `mantissa_width` is the bit width of the mantissa to be shifted, and
256 // `binary_exponent` is the exponent of the number before the shift.
257 //
258 // This accounts for subnormal values, and will return a larger-than-normal
259 // shift if binary_exponent would otherwise be too low.
260 template <typename FloatType>
261 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
262  const int normal_shift =
264  const int minimum_shift =
266  return std::max(normal_shift, minimum_shift);
267 }
268 
269 // Right shifts a uint128 so that it has the requested bit width. (The
270 // resulting value will have 128 - bit_width leading zeroes.) The initial
271 // `value` must be wider than the requested bit width.
272 //
273 // Returns the number of bits shifted.
275  const int current_bit_width = BitWidth(*value);
276  const int shift = current_bit_width - bit_width;
277  *value >>= shift;
278  return shift;
279 }
280 
281 // Checks if the given ParsedFloat represents one of the edge cases that are
282 // not dependent on number base: zero, infinity, or NaN. If so, sets *value
283 // the appropriate double, and returns true.
284 template <typename FloatType>
286  FloatType* value) {
288  // A bug in both clang and gcc would cause the compiler to optimize away the
289  // buffer we are building below. Declaring the buffer volatile avoids the
290  // issue, and has no measurable performance impact in microbenchmarks.
291  //
292  // https://bugs.llvm.org/show_bug.cgi?id=37778
293  // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
294  constexpr ptrdiff_t kNanBufferSize = 128;
295  volatile char n_char_sequence[kNanBufferSize];
296  if (input.subrange_begin == nullptr) {
297  n_char_sequence[0] = '\0';
298  } else {
299  ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
300  nan_size = std::min(nan_size, kNanBufferSize - 1);
301  std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
302  n_char_sequence[nan_size] = '\0';
303  }
304  char* nan_argument = const_cast<char*>(n_char_sequence);
306  : FloatTraits<FloatType>::MakeNan(nan_argument);
307  return true;
308  }
310  *value = negative ? -std::numeric_limits<FloatType>::infinity()
311  : std::numeric_limits<FloatType>::infinity();
312  return true;
313  }
314  if (input.mantissa == 0) {
315  *value = negative ? -0.0 : 0.0;
316  return true;
317  }
318  return false;
319 }
320 
321 // Given a CalculatedFloat result of a from_chars conversion, generate the
322 // correct output values.
323 //
324 // CalculatedFloat can represent an underflow or overflow, in which case the
325 // error code in *result is set. Otherwise, the calculated floating point
326 // number is stored in *value.
327 template <typename FloatType>
328 void EncodeResult(const CalculatedFloat& calculated, bool negative,
330  if (calculated.exponent == kOverflow) {
331  result->ec = std::errc::result_out_of_range;
334  return;
335  } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
336  result->ec = std::errc::result_out_of_range;
337  *value = negative ? -0.0 : 0.0;
338  return;
339  }
341  calculated.exponent, negative);
342 }
343 
344 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
345 // the remaining bits using round_to_nearest logic. The value is returned as a
346 // uint64_t, since this is the type used by this library for storing calculated
347 // floating point mantissas.
348 //
349 // It is expected that the width of the input value shifted by `shift` will
350 // be the correct bit-width for the target mantissa, which is strictly narrower
351 // than a uint64_t.
352 //
353 // If `input_exact` is false, then a nonzero error epsilon is assumed. For
354 // rounding purposes, the true value being rounded is strictly greater than the
355 // input value. The error may represent a single lost carry bit.
356 //
357 // When input_exact, shifted bits of the form 1000000... represent a tie, which
358 // is broken by rounding to even -- the rounding direction is chosen so the low
359 // bit of the returned value is 0.
360 //
361 // When !input_exact, shifted bits of the form 10000000... represent a value
362 // strictly greater than one half (due to the error epsilon), and so ties are
363 // always broken by rounding up.
364 //
365 // When !input_exact, shifted bits of the form 01111111... are uncertain;
366 // the true value may or may not be greater than 10000000..., due to the
367 // possible lost carry bit. The correct rounding direction is unknown. In this
368 // case, the result is rounded down, and `output_exact` is set to false.
369 //
370 // Zero and negative values of `shift` are accepted, in which case the word is
371 // shifted left, as necessary.
372 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
373  bool* output_exact) {
374  if (shift <= 0) {
375  *output_exact = input_exact;
376  return static_cast<uint64_t>(value << -shift);
377  }
378  if (shift >= 128) {
379  // Exponent is so small that we are shifting away all significant bits.
380  // Answer will not be representable, even as a subnormal, so return a zero
381  // mantissa (which represents underflow).
382  *output_exact = true;
383  return 0;
384  }
385 
386  *output_exact = true;
387  const uint128 shift_mask = (uint128(1) << shift) - 1;
388  const uint128 halfway_point = uint128(1) << (shift - 1);
389 
390  const uint128 shifted_bits = value & shift_mask;
391  value >>= shift;
392  if (shifted_bits > halfway_point) {
393  // Shifted bits greater than 10000... require rounding up.
394  return static_cast<uint64_t>(value + 1);
395  }
396  if (shifted_bits == halfway_point) {
397  // In exact mode, shifted bits of 10000... mean we're exactly halfway
398  // between two numbers, and we must round to even. So only round up if
399  // the low bit of `value` is set.
400  //
401  // In inexact mode, the nonzero error means the actual value is greater
402  // than the halfway point and we must alway round up.
403  if ((value & 1) == 1 || !input_exact) {
404  ++value;
405  }
406  return static_cast<uint64_t>(value);
407  }
408  if (!input_exact && shifted_bits == halfway_point - 1) {
409  // Rounding direction is unclear, due to error.
410  *output_exact = false;
411  }
412  // Otherwise, round down.
413  return static_cast<uint64_t>(value);
414 }
415 
416 // Checks if a floating point guess needs to be rounded up, using high precision
417 // math.
418 //
419 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
420 // number represented by `parsed_decimal`.
421 //
422 // The exact number represented by `parsed_decimal` must lie between the two
423 // numbers:
424 // A = `guess_mantissa * 2**guess_exponent`
425 // B = `(guess_mantissa + 1) * 2**guess_exponent`
426 //
427 // This function returns false if `A` is the better guess, and true if `B` is
428 // the better guess, with rounding ties broken by rounding to even.
429 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
430  const strings_internal::ParsedFloat& parsed_decimal) {
431  // 768 is the number of digits needed in the worst case. We could determine a
432  // better limit dynamically based on the value of parsed_decimal.exponent.
433  // This would optimize pathological input cases only. (Sane inputs won't have
434  // hundreds of digits of mantissa.)
436  int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
437 
438  // Adjust the `guess` arguments to be halfway between A and B.
439  guess_mantissa = guess_mantissa * 2 + 1;
440  guess_exponent -= 1;
441 
442  // In our comparison:
443  // lhs = exact = exact_mantissa * 10**exact_exponent
444  // = exact_mantissa * 5**exact_exponent * 2**exact_exponent
445  // rhs = guess = guess_mantissa * 2**guess_exponent
446  //
447  // Because we are doing integer math, we can't directly deal with negative
448  // exponents. We instead move these to the other side of the inequality.
449  absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
450  int comparison;
451  if (exact_exponent >= 0) {
452  lhs.MultiplyByFiveToTheNth(exact_exponent);
453  absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
454  // There are powers of 2 on both sides of the inequality; reduce this to
455  // a single bit-shift.
456  if (exact_exponent > guess_exponent) {
457  lhs.ShiftLeft(exact_exponent - guess_exponent);
458  } else {
459  rhs.ShiftLeft(guess_exponent - exact_exponent);
460  }
461  comparison = Compare(lhs, rhs);
462  } else {
463  // Move the power of 5 to the other side of the equation, giving us:
464  // lhs = exact_mantissa * 2**exact_exponent
465  // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
468  rhs.MultiplyBy(guess_mantissa);
469  if (exact_exponent > guess_exponent) {
470  lhs.ShiftLeft(exact_exponent - guess_exponent);
471  } else {
472  rhs.ShiftLeft(guess_exponent - exact_exponent);
473  }
474  comparison = Compare(lhs, rhs);
475  }
476  if (comparison < 0) {
477  return false;
478  } else if (comparison > 0) {
479  return true;
480  } else {
481  // When lhs == rhs, the decimal input is exactly between A and B.
482  // Round towards even -- round up only if the low bit of the initial
483  // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
484  // the beginning of this function, so test the 2nd bit here.
485  return (guess_mantissa & 2) == 2;
486  }
487 }
488 
489 // Constructs a CalculatedFloat from a given mantissa and exponent, but
490 // with the following normalizations applied:
491 //
492 // If rounding has caused mantissa to increase just past the allowed bit
493 // width, shift and adjust exponent.
494 //
495 // If exponent is too high, sets kOverflow.
496 //
497 // If mantissa is zero (representing a non-zero value not representable, even
498 // as a subnormal), sets kUnderflow.
499 template <typename FloatType>
503  mantissa >>= 1;
504  exponent += 1;
505  }
507  result.exponent = kOverflow;
508  } else if (mantissa == 0) {
509  result.exponent = kUnderflow;
510  } else {
511  result.exponent = exponent;
512  result.mantissa = mantissa;
513  }
514  return result;
515 }
516 
517 template <typename FloatType>
519  const strings_internal::ParsedFloat& parsed_hex) {
520  uint64_t mantissa = parsed_hex.mantissa;
521  int exponent = parsed_hex.exponent;
522  auto mantissa_width = static_cast<unsigned>(bit_width(mantissa));
523  const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
524  bool result_exact;
525  exponent += shift;
527  /* input exact= */ true, &result_exact);
528  // ParseFloat handles rounding in the hexadecimal case, so we don't have to
529  // check `result_exact` here.
530  return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
531 }
532 
533 template <typename FloatType>
535  const strings_internal::ParsedFloat& parsed_decimal) {
537 
538  // Large or small enough decimal exponents will always result in overflow
539  // or underflow.
540  if (Power10Underflow(parsed_decimal.exponent)) {
541  result.exponent = kUnderflow;
542  return result;
543  } else if (Power10Overflow(parsed_decimal.exponent)) {
544  result.exponent = kOverflow;
545  return result;
546  }
547 
548  // Otherwise convert our power of 10 into a power of 2 times an integer
549  // mantissa, and multiply this by our parsed decimal mantissa.
550  uint128 wide_binary_mantissa = parsed_decimal.mantissa;
551  wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
552  int binary_exponent = Power10Exponent(parsed_decimal.exponent);
553 
554  // Discard bits that are inaccurate due to truncation error. The magic
555  // `mantissa_width` constants below are justified in
556  // https://abseil.io/about/design/charconv. They represent the number of bits
557  // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
558  // propagation.
559  bool mantissa_exact;
560  int mantissa_width;
561  if (parsed_decimal.subrange_begin) {
562  // Truncated mantissa
563  mantissa_width = 58;
564  mantissa_exact = false;
565  binary_exponent +=
566  TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
567  } else if (!Power10Exact(parsed_decimal.exponent)) {
568  // Exact mantissa, truncated power of ten
569  mantissa_width = 63;
570  mantissa_exact = false;
571  binary_exponent +=
572  TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
573  } else {
574  // Product is exact
575  mantissa_width = BitWidth(wide_binary_mantissa);
576  mantissa_exact = true;
577  }
578 
579  // Shift into an FloatType-sized mantissa, and round to nearest.
580  const int shift =
581  NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
582  bool result_exact;
583  binary_exponent += shift;
584  uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
585  mantissa_exact, &result_exact);
586  if (!result_exact) {
587  // We could not determine the rounding direction using int128 math. Use
588  // full resolution math instead.
589  if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
590  binary_mantissa += 1;
591  }
592  }
593 
594  return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
595  binary_exponent);
596 }
597 
598 template <typename FloatType>
599 from_chars_result FromCharsImpl(const char* first, const char* last,
600  FloatType& value, chars_format fmt_flags) {
602  result.ptr = first; // overwritten on successful parse
603  result.ec = std::errc();
604 
605  bool negative = false;
606  if (first != last && *first == '-') {
607  ++first;
608  negative = true;
609  }
610  // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
611  // to parse a hexadecimal float.
612  if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
613  *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
614  const char* hex_first = first + 2;
616  strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
617  if (hex_parse.end == nullptr ||
619  // Either we failed to parse a hex float after the "0x", or we read
620  // "0xinf" or "0xnan" which we don't want to match.
621  //
622  // However, a string that begins with "0x" also begins with "0", which
623  // is normally a valid match for the number zero. So we want these
624  // strings to match zero unless fmt_flags is `scientific`. (This flag
625  // means an exponent is required, which the string "0" does not have.)
626  if (fmt_flags == chars_format::scientific) {
627  result.ec = std::errc::invalid_argument;
628  } else {
629  result.ptr = first + 1;
630  value = negative ? -0.0 : 0.0;
631  }
632  return result;
633  }
634  // We matched a value.
635  result.ptr = hex_parse.end;
636  if (HandleEdgeCase(hex_parse, negative, &value)) {
637  return result;
638  }
639  CalculatedFloat calculated =
640  CalculateFromParsedHexadecimal<FloatType>(hex_parse);
641  EncodeResult(calculated, negative, &result, &value);
642  return result;
643  }
644  // Otherwise, we choose the number base based on the flags.
645  if ((fmt_flags & chars_format::hex) == chars_format::hex) {
647  strings_internal::ParseFloat<16>(first, last, fmt_flags);
648  if (hex_parse.end == nullptr) {
649  result.ec = std::errc::invalid_argument;
650  return result;
651  }
652  result.ptr = hex_parse.end;
653  if (HandleEdgeCase(hex_parse, negative, &value)) {
654  return result;
655  }
656  CalculatedFloat calculated =
657  CalculateFromParsedHexadecimal<FloatType>(hex_parse);
658  EncodeResult(calculated, negative, &result, &value);
659  return result;
660  } else {
661  strings_internal::ParsedFloat decimal_parse =
662  strings_internal::ParseFloat<10>(first, last, fmt_flags);
663  if (decimal_parse.end == nullptr) {
664  result.ec = std::errc::invalid_argument;
665  return result;
666  }
667  result.ptr = decimal_parse.end;
668  if (HandleEdgeCase(decimal_parse, negative, &value)) {
669  return result;
670  }
671  CalculatedFloat calculated =
672  CalculateFromParsedDecimal<FloatType>(decimal_parse);
673  EncodeResult(calculated, negative, &result, &value);
674  return result;
675  }
676 }
677 } // namespace
678 
679 from_chars_result from_chars(const char* first, const char* last, double& value,
680  chars_format fmt) {
681  return FromCharsImpl(first, last, value, fmt);
682 }
683 
684 from_chars_result from_chars(const char* first, const char* last, float& value,
685  chars_format fmt) {
686  return FromCharsImpl(first, last, value, fmt);
687 }
688 
689 namespace {
690 
691 // Table of powers of 10, from kPower10TableMin to kPower10TableMax.
692 //
693 // kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high
694 // bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the
695 // power-of-two exponent. For a given number i, this gives the unique mantissa
696 // and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) *
697 // 2**exponent.
698 
700  0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
701  0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
702  0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
703  0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
704  0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
705  0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
706  0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
707  0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
708  0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
709  0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
710  0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
711  0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
712  0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
713  0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
714  0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
715  0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
716  0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
717  0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
718  0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
719  0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
720  0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
721  0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
722  0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
723  0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
724  0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
725  0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
726  0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
727  0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
728  0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
729  0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
730  0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
731  0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
732  0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
733  0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
734  0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
735  0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
736  0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
737  0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
738  0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
739  0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
740  0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
741  0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
742  0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
743  0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
744  0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
745  0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
746  0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
747  0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
748  0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
749  0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
750  0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
751  0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
752  0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
753  0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
754  0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
755  0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
756  0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
757  0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
758  0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
759  0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
760  0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
761  0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
762  0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
763  0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
764  0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
765  0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
766  0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
767  0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
768  0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
769  0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
770  0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
771  0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
772  0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
773  0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
774  0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
775  0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
776  0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
777  0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
778  0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
779  0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
780  0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
781  0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
782  0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
783  0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
784  0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
785  0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
786  0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
787  0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
788  0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
789  0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
790  0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
791  0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
792  0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
793  0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
794  0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
795  0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
796  0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
797  0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
798  0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
799  0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
800  0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
801  0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
802  0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
803  0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
804  0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
805  0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
806  0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
807  0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
808  0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
809  0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
810  0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
811  0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
812  0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
813  0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
814  0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
815  0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
816  0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
817  0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
818  0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
819  0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
820  0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
821  0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
822  0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
823  0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
824  0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
825  0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
826  0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
827  0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
828  0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
829  0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
830  0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
831  0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
832  0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
833  0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
834  0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
835  0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
836  0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
837  0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
838  0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
839  0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
840  0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
841  0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
842  0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
843  0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
844  0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
845  0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
846  0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
847  0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
848  0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
849  0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
850  0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
851  0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
852  0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
853  0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
854  0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
855  0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
856  0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
857  0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
858  0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
859  0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
860  0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
861  0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
862  0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
863  0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
864  0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
865  0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
866  0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
867  0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
868  0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
869  0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
870  0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
871  0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
872  0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
873  0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
874  0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
875  0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
876  0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
877  0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
878  0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
879  0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
880  0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
881  0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
882  0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
883  0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
884  0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
885  0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
886  0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
887  0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
888  0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
889  0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
890  0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
891  0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
892  0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
893  0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
894  0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
895  0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
896  0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
897  0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
898  0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
899  0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
900  0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
901  0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
902  0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
903  0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
904  0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
905  0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
906  0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
907  0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
908  0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
909  0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
910  0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
911  0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
912  0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
913  0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
914  0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
915  0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
916  0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
917 };
918 
919 const int16_t kPower10ExponentTable[] = {
920  -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166,
921  -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130,
922  -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093,
923  -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057,
924  -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020,
925  -1017, -1014, -1010, -1007, -1004, -1000, -997, -994, -990, -987, -984,
926  -980, -977, -974, -970, -967, -964, -960, -957, -954, -950, -947,
927  -944, -940, -937, -934, -931, -927, -924, -921, -917, -914, -911,
928  -907, -904, -901, -897, -894, -891, -887, -884, -881, -877, -874,
929  -871, -867, -864, -861, -857, -854, -851, -847, -844, -841, -838,
930  -834, -831, -828, -824, -821, -818, -814, -811, -808, -804, -801,
931  -798, -794, -791, -788, -784, -781, -778, -774, -771, -768, -764,
932  -761, -758, -754, -751, -748, -744, -741, -738, -735, -731, -728,
933  -725, -721, -718, -715, -711, -708, -705, -701, -698, -695, -691,
934  -688, -685, -681, -678, -675, -671, -668, -665, -661, -658, -655,
935  -651, -648, -645, -642, -638, -635, -632, -628, -625, -622, -618,
936  -615, -612, -608, -605, -602, -598, -595, -592, -588, -585, -582,
937  -578, -575, -572, -568, -565, -562, -558, -555, -552, -549, -545,
938  -542, -539, -535, -532, -529, -525, -522, -519, -515, -512, -509,
939  -505, -502, -499, -495, -492, -489, -485, -482, -479, -475, -472,
940  -469, -465, -462, -459, -455, -452, -449, -446, -442, -439, -436,
941  -432, -429, -426, -422, -419, -416, -412, -409, -406, -402, -399,
942  -396, -392, -389, -386, -382, -379, -376, -372, -369, -366, -362,
943  -359, -356, -353, -349, -346, -343, -339, -336, -333, -329, -326,
944  -323, -319, -316, -313, -309, -306, -303, -299, -296, -293, -289,
945  -286, -283, -279, -276, -273, -269, -266, -263, -259, -256, -253,
946  -250, -246, -243, -240, -236, -233, -230, -226, -223, -220, -216,
947  -213, -210, -206, -203, -200, -196, -193, -190, -186, -183, -180,
948  -176, -173, -170, -166, -163, -160, -157, -153, -150, -147, -143,
949  -140, -137, -133, -130, -127, -123, -120, -117, -113, -110, -107,
950  -103, -100, -97, -93, -90, -87, -83, -80, -77, -73, -70,
951  -67, -63, -60, -57, -54, -50, -47, -44, -40, -37, -34,
952  -30, -27, -24, -20, -17, -14, -10, -7, -4, 0, 3,
953  6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 39,
954  43, 46, 49, 53, 56, 59, 63, 66, 69, 73, 76,
955  79, 83, 86, 89, 93, 96, 99, 103, 106, 109, 113,
956  116, 119, 123, 126, 129, 132, 136, 139, 142, 146, 149,
957  152, 156, 159, 162, 166, 169, 172, 176, 179, 182, 186,
958  189, 192, 196, 199, 202, 206, 209, 212, 216, 219, 222,
959  226, 229, 232, 235, 239, 242, 245, 249, 252, 255, 259,
960  262, 265, 269, 272, 275, 279, 282, 285, 289, 292, 295,
961  299, 302, 305, 309, 312, 315, 319, 322, 325, 328, 332,
962  335, 338, 342, 345, 348, 352, 355, 358, 362, 365, 368,
963  372, 375, 378, 382, 385, 388, 392, 395, 398, 402, 405,
964  408, 412, 415, 418, 422, 425, 428, 431, 435, 438, 441,
965  445, 448, 451, 455, 458, 461, 465, 468, 471, 475, 478,
966  481, 485, 488, 491, 495, 498, 501, 505, 508, 511, 515,
967  518, 521, 524, 528, 531, 534, 538, 541, 544, 548, 551,
968  554, 558, 561, 564, 568, 571, 574, 578, 581, 584, 588,
969  591, 594, 598, 601, 604, 608, 611, 614, 617, 621, 624,
970  627, 631, 634, 637, 641, 644, 647, 651, 654, 657, 661,
971  664, 667, 671, 674, 677, 681, 684, 687, 691, 694, 697,
972  701, 704, 707, 711, 714, 717, 720, 724, 727, 730, 734,
973  737, 740, 744, 747, 750, 754, 757, 760, 764, 767, 770,
974  774, 777, 780, 784, 787, 790, 794, 797, 800, 804, 807,
975  810, 813, 817, 820, 823, 827, 830, 833, 837, 840, 843,
976  847, 850, 853, 857, 860, 863, 867, 870, 873, 877, 880,
977  883, 887, 890, 893, 897, 900, 903, 907, 910, 913, 916,
978  920, 923, 926, 930, 933, 936, 940, 943, 946, 950, 953,
979  956, 960,
980 };
981 
982 } // namespace
984 } // namespace absl
absl::ABSL_NAMESPACE_BEGIN::MustRoundUp
bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent, const strings_internal::ParsedFloat &parsed_decimal)
Definition: abseil-cpp/absl/strings/charconv.cc:429
absl::ABSL_NAMESPACE_BEGIN::kUnderflow
constexpr int kUnderflow
Definition: abseil-cpp/absl/strings/charconv.cc:226
_gevent_test_main.result
result
Definition: _gevent_test_main.py:96
absl::ABSL_NAMESPACE_BEGIN::kPower10ExponentTable
const int16_t kPower10ExponentTable[]
Definition: bloaty/third_party/abseil-cpp/absl/strings/charconv.cc:190
absl::strings_internal::FloatType::kInfinity
@ kInfinity
absl::strings_internal::ParsedFloat::mantissa
uint64_t mantissa
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:46
absl::ABSL_NAMESPACE_BEGIN::FloatTraits
Definition: abseil-cpp/absl/strings/charconv.cc:64
absl::strings_internal::ParsedFloat
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:31
absl::ABSL_NAMESPACE_BEGIN::kOverflow
constexpr int kOverflow
Definition: abseil-cpp/absl/strings/charconv.cc:225
absl::ABSL_NAMESPACE_BEGIN::CalculateFromParsedDecimal
CalculatedFloat CalculateFromParsedDecimal(const strings_internal::ParsedFloat &parsed_decimal)
Definition: abseil-cpp/absl/strings/charconv.cc:534
exponent
int exponent
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1100
absl::strings_internal::BigUnsigned::FiveToTheNth
static BigUnsigned FiveToTheNth(int n)
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.cc:288
u
OPENSSL_EXPORT pem_password_cb void * u
Definition: pem.h:351
absl::ABSL_NAMESPACE_BEGIN::CalculatedFloat::exponent
int exponent
Definition: abseil-cpp/absl/strings/charconv.cc:240
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
absl::ABSL_NAMESPACE_BEGIN::CalculatedFloatFromRawValues
CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent)
Definition: abseil-cpp/absl/strings/charconv.cc:500
absl::ABSL_NAMESPACE_BEGIN::NormalizedShiftSize
int NormalizedShiftSize(int mantissa_width, int binary_exponent)
Definition: abseil-cpp/absl/strings/charconv.cc:261
absl::strings_internal::ParsedFloat::type
FloatType type
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:59
absl::strings_internal::ParseFloat< 10 >
template ParsedFloat ParseFloat< 10 >(const char *begin, const char *end, chars_format format_flags)
uint32_t
unsigned int uint32_t
Definition: stdint-msvc2008.h:80
absl::Uint128High64
constexpr uint64_t Uint128High64(uint128 v)
Definition: abseil-cpp/absl/numeric/int128.h:634
absl::strings_internal::ParseFloat< 16 >
template ParsedFloat ParseFloat< 16 >(const char *begin, const char *end, chars_format format_flags)
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
int16_t
signed short int16_t
Definition: stdint-msvc2008.h:76
absl::Uint128Low64
constexpr uint64_t Uint128Low64(uint128 v)
Definition: abseil-cpp/absl/numeric/int128.h:632
absl::strings_internal::BigUnsigned
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.h:57
absl::strings_internal::ParsedFloat::exponent
int exponent
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:52
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
absl::strings_internal::FloatType::kNumber
@ kNumber
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
absl::ABSL_NAMESPACE_BEGIN::FloatTraits< float >::Make
static float Make(uint32_t mantissa, int exponent, bool sign)
Definition: abseil-cpp/absl/strings/charconv.cc:146
absl::ABSL_NAMESPACE_BEGIN::Power10Overflow
bool Power10Overflow(int n)
Definition: abseil-cpp/absl/strings/charconv.cc:212
absl::ABSL_NAMESPACE_BEGIN::ShiftRightAndRound
uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact, bool *output_exact)
Definition: abseil-cpp/absl/strings/charconv.cc:372
negative
static uint8_t negative(signed char b)
Definition: curve25519.c:786
absl::ABSL_NAMESPACE_BEGIN::FloatTraits< double >::MakeNan
static double MakeNan(const char *tagp)
Definition: abseil-cpp/absl/strings/charconv.cc:86
absl::ABSL_NAMESPACE_BEGIN::CalculateFromParsedHexadecimal
CalculatedFloat CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat &parsed_hex)
Definition: abseil-cpp/absl/strings/charconv.cc:518
absl::strings_internal::BigUnsigned::ReadFloatMantissa
int ReadFloatMantissa(const ParsedFloat &fp, int significant_digits)
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.cc:171
absl::chars_format::scientific
@ scientific
absl::ABSL_NAMESPACE_BEGIN::TruncateToBitWidth
int TruncateToBitWidth(int bit_width, uint128 *value)
Definition: abseil-cpp/absl/strings/charconv.cc:274
min
#define min(a, b)
Definition: qsort.h:83
absl::ABSL_NAMESPACE_BEGIN::BitWidth
unsigned BitWidth(uint128 value)
Definition: abseil-cpp/absl/strings/charconv.cc:245
mantissa
MantissaType mantissa
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1098
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
absl::bit_width
ABSL_INTERNAL_CONSTEXPR_CLZ std::enable_if< std::is_unsigned< T >::value, T >::type bit_width(T x) noexcept
Definition: abseil-cpp/absl/numeric/bits.h:135
absl::countl_zero
ABSL_INTERNAL_CONSTEXPR_CLZ std::enable_if< std::is_unsigned< T >::value, int >::type countl_zero(T x) noexcept
Definition: abseil-cpp/absl/numeric/bits.h:77
absl::ABSL_NAMESPACE_BEGIN::kPower10TableMax
constexpr int kPower10TableMax
Definition: abseil-cpp/absl/strings/charconv.cc:200
absl::strings_internal::FloatType
FloatType
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:28
absl::strings_internal::FloatType::kNan
@ kNan
absl::ABSL_NAMESPACE_BEGIN::FromCharsImpl
from_chars_result FromCharsImpl(const char *first, const char *last, FloatType &value, chars_format fmt_flags)
Definition: abseil-cpp/absl/strings/charconv.cc:599
value
const char * value
Definition: hpack_parser_table.cc:165
absl::strings_internal::BigUnsigned::MultiplyBy
void MultiplyBy(uint32_t v)
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.h:130
absl::ABSL_NAMESPACE_BEGIN::FloatTraits< float >::MakeNan
static float MakeNan(const char *tagp)
Definition: abseil-cpp/absl/strings/charconv.cc:140
testing::internal::fmt
GTEST_API_ const char * fmt
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:1808
absl::chars_format::hex
@ hex
absl::ABSL_NAMESPACE_BEGIN::CalculatedFloat
Definition: abseil-cpp/absl/strings/charconv.cc:238
absl::strings_internal::BigUnsigned::MultiplyByFiveToTheNth
void MultiplyByFiveToTheNth(int n)
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.h:164
absl::ABSL_NAMESPACE_BEGIN::HandleEdgeCase
bool HandleEdgeCase(const strings_internal::ParsedFloat &input, bool negative, FloatType *value)
Definition: abseil-cpp/absl/strings/charconv.cc:285
absl::strings_internal::ParsedFloat::subrange_begin
const char * subrange_begin
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:69
absl::from_chars_result
Definition: abseil-cpp/absl/strings/charconv.h:46
absl::strings_internal::BigUnsigned::ShiftLeft
void ShiftLeft(int count)
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.h:102
std
Definition: grpcpp/impl/codegen/async_unary_call.h:407
first
StrT first
Definition: cxa_demangle.cpp:4884
absl::from_chars
from_chars_result from_chars(const char *first, const char *last, double &value, chars_format fmt)
Definition: abseil-cpp/absl/strings/charconv.cc:679
absl::strings_internal::ParsedFloat::end
const char * end
Definition: abseil-cpp/absl/strings/internal/charconv_parse.h:74
input
std::string input
Definition: bloaty/third_party/protobuf/src/google/protobuf/io/tokenizer_unittest.cc:197
absl::strings_internal::Compare
int Compare(const BigUnsigned< N > &lhs, const BigUnsigned< M > &rhs)
Definition: abseil-cpp/absl/strings/internal/charconv_bigint.h:353
absl::ABSL_NAMESPACE_BEGIN::Power10Exponent
int Power10Exponent(int n)
Definition: abseil-cpp/absl/strings/charconv.cc:206
absl::ABSL_NAMESPACE_BEGIN::EncodeResult
void EncodeResult(const CalculatedFloat &calculated, bool negative, absl::from_chars_result *result, FloatType *value)
Definition: abseil-cpp/absl/strings/charconv.cc:328
absl::ABSL_NAMESPACE_BEGIN::Power10Underflow
bool Power10Underflow(int n)
Definition: abseil-cpp/absl/strings/charconv.cc:216
absl::ABSL_NAMESPACE_BEGIN::FloatTraits< double >::Make
static double Make(uint64_t mantissa, int exponent, bool sign)
Definition: abseil-cpp/absl/strings/charconv.cc:106
absl::ABSL_NAMESPACE_BEGIN::Power10Exact
bool Power10Exact(int n)
Definition: abseil-cpp/absl/strings/charconv.cc:221
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
absl::ABSL_NAMESPACE_BEGIN::Power10Mantissa
uint64_t Power10Mantissa(int n)
Definition: abseil-cpp/absl/strings/charconv.cc:202
absl::chars_format
chars_format
Definition: abseil-cpp/absl/strings/charconv.h:29
absl::ABSL_NAMESPACE_BEGIN::CalculatedFloat::mantissa
uint64_t mantissa
Definition: abseil-cpp/absl/strings/charconv.cc:239
absl::ABSL_NAMESPACE_BEGIN::kPower10TableMin
constexpr int kPower10TableMin
Definition: abseil-cpp/absl/strings/charconv.cc:195
absl::ABSL_NAMESPACE_BEGIN::kPower10MantissaTable
const uint64_t kPower10MantissaTable[]
Definition: bloaty/third_party/abseil-cpp/absl/strings/charconv.cc:189
absl::uint128
Definition: abseil-cpp/absl/numeric/int128.h:104


grpc
Author(s):
autogenerated on Fri May 16 2025 02:57:53